Solveeit Logo

Question

Question: If $sin(\frac{\pi}{4}cot\theta)=cos(\frac{\pi}{4}tan\theta)$, then $\theta=$...

If sin(π4cotθ)=cos(π4tanθ)sin(\frac{\pi}{4}cot\theta)=cos(\frac{\pi}{4}tan\theta), then θ=\theta=

A

nπ+π4n\pi + \frac{\pi}{4}

B

2nπ±π42n\pi \pm \frac{\pi}{4}

C

nππ4n\pi - \frac{\pi}{4}

D

2nπ±π62n\pi \pm \frac{\pi}{6}

Answer

nπ+π4n\pi + \frac{\pi}{4}

Explanation

Solution

The equation sin(π4cotθ)=cos(π4tanθ)sin(\frac{\pi}{4}cot\theta)=cos(\frac{\pi}{4}tan\theta) can be rewritten using the identity cos(x)=sin(π2x)cos(x) = sin(\frac{\pi}{2} - x):

sin(π4cotθ)=sin(π2π4tanθ)sin(\frac{\pi}{4}cot\theta) = sin(\frac{\pi}{2} - \frac{\pi}{4}tan\theta)

The general solution for sin(A)=sin(B)sin(A) = sin(B) is A=nπ+(1)nBA = n\pi + (-1)^n B. Let A=π4cotθA = \frac{\pi}{4}cot\theta and B=π2π4tanθB = \frac{\pi}{2} - \frac{\pi}{4}tan\theta.

Case 1: nn is even (n=2kn=2k). π4cotθ=2kπ+(π2π4tanθ)\frac{\pi}{4}cot\theta = 2k\pi + (\frac{\pi}{2} - \frac{\pi}{4}tan\theta) Dividing by π4\frac{\pi}{4}: cotθ=8k+2tanθcot\theta = 8k + 2 - tan\theta cotθ+tanθ=8k+2cot\theta + tan\theta = 8k + 2 cosθsinθ+sinθcosθ=8k+2\frac{cos\theta}{sin\theta} + \frac{sin\theta}{cos\theta} = 8k + 2 cos2θ+sin2θsinθcosθ=8k+2\frac{cos^2\theta + sin^2\theta}{sin\theta cos\theta} = 8k + 2 1sinθcosθ=8k+2\frac{1}{sin\theta cos\theta} = 8k + 2 2sin(2θ)=8k+2\frac{2}{sin(2\theta)} = 8k + 2 sin(2θ)=28k+2=14k+1sin(2\theta) = \frac{2}{8k+2} = \frac{1}{4k+1}

For k=0k=0, sin(2θ)=1sin(2\theta) = 1. The general solution is 2θ=2mπ+π22\theta = 2m\pi + \frac{\pi}{2}. θ=mπ+π4\theta = m\pi + \frac{\pi}{4}. This matches option (A).

Case 2: nn is odd (n=2k+1n=2k+1). π4cotθ=(2k+1)π(π2π4tanθ)\frac{\pi}{4}cot\theta = (2k+1)\pi - (\frac{\pi}{2} - \frac{\pi}{4}tan\theta) Dividing by π4\frac{\pi}{4}: cotθ=4(2k+1)2+tanθcot\theta = 4(2k+1) - 2 + tan\theta cotθ=8k+42+tanθcot\theta = 8k + 4 - 2 + tan\theta cotθtanθ=8k+2cot\theta - tan\theta = 8k + 2 cos2θsin2θsinθcosθ=8k+2\frac{cos^2\theta - sin^2\theta}{sin\theta cos\theta} = 8k + 2 cos(2θ)sinθcosθ=8k+2\frac{cos(2\theta)}{sin\theta cos\theta} = 8k + 2 2cos(2θ)sin(2θ)=2(8k+2)\frac{2cos(2\theta)}{sin(2\theta)} = 2(8k+2) 2cot(2θ)=16k+42cot(2\theta) = 16k+4 cot(2θ)=8k+2cot(2\theta) = 8k+2 This case does not yield any of the given options.

Checking option (A): If θ=nπ+π4\theta = n\pi + \frac{\pi}{4}, then tanθ=1tan\theta = 1 and cotθ=1cot\theta = 1. LHS = sin(π4×1)=sin(π4)=12sin(\frac{\pi}{4} \times 1) = sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}. RHS = cos(π4×1)=cos(π4)=12cos(\frac{\pi}{4} \times 1) = cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}. LHS = RHS, so option (A) is correct.