Solveeit Logo

Question

Question: If \(\sin\alpha = \frac{- 3}{5},\) where \(\pi < \alpha < \frac{3\pi}{2},\) then \(\cos\frac{1}{2}\a...

If sinα=35,\sin\alpha = \frac{- 3}{5}, where π<α<3π2,\pi < \alpha < \frac{3\pi}{2}, then cos12α=\cos\frac{1}{2}\alpha =

A

110\frac{- 1}{\sqrt{10}}

B

110\frac{1}{\sqrt{10}}

C

310\frac{3}{\sqrt{10}}

D

310\frac{- 3}{\sqrt{10}}

Answer

110\frac{- 1}{\sqrt{10}}

Explanation

Solution

cos(α/2)=1+cosα2\cos(\alpha/2) = - \sqrt{\frac{1 + \cos\alpha}{2}}

cosα=1sin2α\cos\alpha = - \sqrt{1 - \sin^{2}\alpha} [α\because\alphalies in IIIrd Quadrant]

=1925=45= - \sqrt{1 - \frac{9}{25}} = - \frac{4}{5}

cos(α/2)=1452=110\therefore\cos(\alpha/2) = - \sqrt{\frac{1 - \frac{4}{5}}{2}} = - \frac{1}{\sqrt{10}}.