Solveeit Logo

Question

Question: If \(\sin(\alpha - \beta) = \frac{1}{2}\)and \(\cos(\alpha + \beta) = \frac{1}{2},\) where \(\alpha\...

If sin(αβ)=12\sin(\alpha - \beta) = \frac{1}{2}and cos(α+β)=12,\cos(\alpha + \beta) = \frac{1}{2}, where α\alpha and β\beta are positive acute angles, then

A

α=45,β=15\alpha = 45{^\circ},\beta = 15{^\circ}

B

α=15,β=45\alpha = 15{^\circ},\beta = 45{^\circ}

C

α=60,β=15\alpha = 60{^\circ},\beta = 15{^\circ}

D

None of these

Answer

α=45,β=15\alpha = 45{^\circ},\beta = 15{^\circ}

Explanation

Solution

sin(αβ)=12=sin30αβ=30\sin(\alpha - \beta) = \frac{1}{2} = \sin 30{^\circ} \Rightarrow \alpha - \beta = 30{^\circ} …..(i)

and cos(α+β)=12α+β=60\cos(\alpha + \beta) = \frac{1}{2} \Rightarrow \alpha + \beta = 60{^\circ} …..(ii)

Solving (i) and (ii), we get α=45\alpha = 45{^\circ}and β=15\beta = 15{^\circ}.

Trick : In such type of problems, students should satisfy the given conditions with the values given in the options. Here α=45\alpha = 45{^\circ}and β=15\beta = 15{^\circ}satisfy both the conditions.