Solveeit Logo

Question

Question: If $\sin^{6}\theta = 1 + \cos^{4}3\theta$ then the most general value of $\theta$ is: (where n is an...

If sin6θ=1+cos43θ\sin^{6}\theta = 1 + \cos^{4}3\theta then the most general value of θ\theta is: (where n is an integer)

A

(n+12)π(n+\frac{1}{2})\pi

B

(2n+1)π6(2n+1)\frac{\pi}{6}

C

(n+12)π2(n+\frac{1}{2})\frac{\pi}{2}

Answer

(n+12)π(n+\frac{1}{2})\pi

Explanation

Solution

For equality, sin6θ=1\sin^6\theta=1 gives θ=π/2+nπ\theta=\pi/2+n\pi and cos4(3θ)=0\cos^4(3\theta)=0 gives θ=π/6+(mπ)/3\theta=\pi/6+(m\pi)/3. These two are consistent if m=1+3nm=1+3n. Hence, θ=(n+12)π\theta = (n+\frac{1}{2})\pi.