Solveeit Logo

Question

Question: If \(\sin^{2}x\lbrack 4\sin^{2}x - 1 - (1 - \sin^{2}x)\rbrack = 0\), then the value of \(\Rightarrow...

If sin2x[4sin2x1(1sin2x)]=0\sin^{2}x\lbrack 4\sin^{2}x - 1 - (1 - \sin^{2}x)\rbrack = 0, then the value of \Rightarrowis.

A

sin2x[5sin2x2]=0\sin^{2}x\lbrack 5\sin^{2}x - 2\rbrack = 0

B

\Rightarrow

C

sinx=0\sin x = 0

D

None of these

Answer

\Rightarrow

Explanation

Solution

θ=12[nπ+(1)nsin1(34)]\theta = \frac{1}{2}\left\lbrack n\pi + ( - 1)^{n}\sin^{- 1}\left( \frac{3}{4} \right) \right\rbrack

cospθ=cosqθpθ=2nπ±qθθ=2nπp±q4+2sin2x=5\cos p\theta = \cos q\theta \Rightarrow p\theta = 2n\pi \pm q\theta \Rightarrow \theta = \frac{2n\pi}{p \pm q}4 + 2\sin^{2}x = 5

\Rightarrow sin2x=12=sin2π4x=nπ±π4\sin^{2}x = \frac{1}{2} = \sin^{2}\frac{\pi}{4} \Rightarrow x = n\pi \pm \frac{\pi}{4} 3sinα4sin3α=4sinα(sin2xsin2α)3\sin\alpha - 4\sin^{3}\alpha = 4\sin\alpha(\sin^{2}x - \sin^{2}\alpha) \therefore.

Trick : Since sin2x=(32)2\sin^{2}x = \left( \frac{\sqrt{3}}{2} \right)^{2} satisfies the equation and therefore the general value should be sin2x=sin2π/3\sin^{2}x = \sin^{2}\pi/3.