Solveeit Logo

Question

Question: If \(\sin^{2}x = \frac{1}{2} = \sin^{2}\frac{\pi}{4} \Rightarrow x = n\pi \pm \frac{\pi}{4}\), then ...

If sin2x=12=sin2π4x=nπ±π4\sin^{2}x = \frac{1}{2} = \sin^{2}\frac{\pi}{4} \Rightarrow x = n\pi \pm \frac{\pi}{4}, then the general values of 3sinα4sin3α=4sinα(sin2xsin2α)3\sin\alpha - 4\sin^{3}\alpha = 4\sin\alpha(\sin^{2}x - \sin^{2}\alpha) are.

A

\therefore

B

sin2x=(32)2\sin^{2}x = \left( \frac{\sqrt{3}}{2} \right)^{2}

C

sin2x=sin2π3\sin^{2}x = \sin^{2}\frac{\pi}{3}

D

x=nπ±π3x = n\pi \pm \frac{\pi}{3}

Answer

sin2x=(32)2\sin^{2}x = \left( \frac{\sqrt{3}}{2} \right)^{2}

Explanation

Solution

θ=2nπ+π2\theta = 2n\pi + \frac{\pi}{2}; θ=2nπ\theta = 2n\pi

i.e., 1cos2θ1+cos2θ=3\frac{1 - \cos 2\theta}{1 + \cos 2\theta} = 3

or 1(12sin2θ)1+(2cos2θ1)=3\frac{1 - (1 - 2\sin^{2}\theta)}{1 + (2\cos^{2}\theta - 1)} = 3.