Question
Question: If $\sin^2 x + \sin x -1 = 0$, then value of the expression $[3\cos^6 x + 4\cos^4 x + 5\cos^2 x]$ is...
If sin2x+sinx−1=0, then value of the expression [3cos6x+4cos4x+5cos2x] is _____.
(where [.] represents greatest integer function)

Answer
5
Explanation
Solution
Solve sin2x+sinx−1=0 to get sinx=25−1. Using cos2x=1−sin2x, we find cos2x=25−1. Let u=cos2x. Calculate u2 and u3 and then evaluate 3u3+4u2+5u which simplifies to 275−5≈5.326. Hence the greatest integer is 5.