Solveeit Logo

Question

Question: If $\sin^2 x + \sin x -1 = 0$, then value of the expression $[3\cos^6 x + 4\cos^4 x + 5\cos^2 x]$ is...

If sin2x+sinx1=0\sin^2 x + \sin x -1 = 0, then value of the expression [3cos6x+4cos4x+5cos2x][3\cos^6 x + 4\cos^4 x + 5\cos^2 x] is _____.

(where [.] represents greatest integer function)

Answer

5

Explanation

Solution

Solve sin2x+sinx1=0\sin^2 x+\sin x-1=0 to get sinx=512\sin x=\frac{\sqrt{5}-1}{2}. Using cos2x=1sin2x\cos^2x=1-\sin^2x, we find cos2x=512\cos^2 x=\frac{\sqrt{5}-1}{2}. Let u=cos2xu=\cos^2 x. Calculate u2u^2 and u3u^3 and then evaluate 3u3+4u2+5u3u^3+4u^2+5u which simplifies to 75525.326\frac{7\sqrt{5}-5}{2}\approx5.326. Hence the greatest integer is 5.