Solveeit Logo

Question

Question: If sin (y+z-x), sin (z+x-y) and sin (x+y-z) are in AP, then, tan x, tan y and tan z are in A. AP ...

If sin (y+z-x), sin (z+x-y) and sin (x+y-z) are in AP, then, tan x, tan y and tan z are in
A. AP
B. GP
C. HP
D. None of these

Explanation

Solution

Put the sin values in the basic relation of AP which is the difference of two consecutive terms will be the same and apply suitable identities. We will use sinAsinB=2sin(AB2)×cos(A+B2)\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\times \cos \left( \dfrac{A+B}{2} \right) and then convert the sin and cos values in the form of tan values using another identity given by tanCtanD=sin(C+D)cosC×cosD\tan C-\tan D=\dfrac{\sin \left( C+D \right)}{\cos C\times \cos D}

Complete step by step answer:
We are given that sin (y+z-x), sin (z+x-y), sin (x+y-z) are in AP or arithmetic progression. We have to find the relation between tan (x), tan (y) and tan (z).
We know that if a, b, c are in AP then, the difference between each of them is equal, that is,
b - a = c - b
Applying this very relation in given sin values, we get
sin (y+z-x) to be 'a', sin (z+x-y) to be 'b' and sin (x+y-z) to be 'c',
sin (z+xy)sin (y+zx) = sin (x+yz)sin (z+xy)\text{sin }\left( \text{z}+\text{x}-\text{y} \right)-s\text{in }\left( \text{y}+\text{z}-\text{x} \right)\text{ }=\text{ sin }\left( \text{x}+\text{y}-\text{z} \right)-\text{sin }\left( \text{z}+\text{x}-\text{y} \right)
We know the trigonometric identity given by
sinAsinB=2sin(AB2)×cos(A+B2)\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\times \cos \left( \dfrac{A+B}{2} \right)
So, we get

& \text{sin }\left( \text{z}+\text{x}-\text{y} \right)-s\text{in }\left( \text{y}+\text{z}-\text{x} \right)=2\sin \left( x-y \right)\cos z \\\ & \text{sin }\left( \text{x}+\text{y}-\text{z} \right)-\text{sin }\left( \text{z}+\text{x}-\text{y} \right)=2\sin \left( y-z \right)\cos x \\\ & \Rightarrow 2\sin \left( x-y \right)\cos z=2\sin \left( y-z \right)\cos x \\\ \end{aligned}$$ Now, we will divide the equation by $$\cos x\times \cos y\times \cos z$$ on both sides to convert the form into tan. $$\begin{aligned} & \dfrac{2\sin \left( x-y \right)\cos z}{\cos x\times \cos y\times \cos z}=\dfrac{2\sin \left( y-z \right)\cos x}{\cos x\times \cos y\times \cos z} \\\ & \Rightarrow \dfrac{\sin \left( x-y \right)}{\cos x\times \cos y}=\dfrac{\sin \left( y-z \right)}{\cos y\times \cos z} \\\ \end{aligned}$$ We know the trigonometric identity, $$\tan C-\tan D=\dfrac{\sin \left( C+D \right)}{\cos C\times \cos D}$$ Applying the identities here, we get $$\tan x-\tan y=\tan y-\tan z$$ The difference between tan x, tan y and tan z is the same. Therefore, these are in AP. Therefore, option A is correct. **Note:** The problem can be done by other methods too, for example, by considering the relation of AP to be 2b = a+c and then proceeding, so, we will have the equation as, $$\text{2sin }\left( \text{z}+\text{x}-\text{y} \right)=s\text{in }\left( \text{y}+\text{z}-\text{x} \right)\text{+sin }\left( \text{x}+\text{y}-\text{z} \right)$$ Then using variation identities, this can be converted in terms of tanx, tany and tanz to reach the final conclusion.