Solveeit Logo

Question

Mathematics Question on integral

If sin y = x sin (a + y), then dydxis

A

sin (a + y)

B

sin2 (a + y)

C

sin2⁡(a+y)sin⁡a

D

sin⁡(a+y)sin⁡a

Answer

sin2⁡(a+y)sin⁡a

Explanation

Solution

Explanation:
dydx=sin(a+y)cosysinycos(a+y)sin2(a+y)\frac{dy}{dx} = \frac{sin(a+y) cosy - siny cos(a+y)}{sin^2(a+y)}
x=sinysin(a+y)x = \frac{siny}{sin(a+y)}
On differentiating w.r.t. y, we get
=sin(a+yy)sin2(a+y)=\frac{sin(a+y-y)}{sin^2(a+y)}
dydx=sin2(a+y)sina\Rightarrow \frac{dy}{dx}=\frac{sin^2(a+y)}{sina}