Question
Question: If \(\sin y + {e^{ - x\cos y}} = e\), then \(\dfrac{{dy}}{{dx}}\) at \(\left( {1,\pi } \right)\) is ...
If siny+e−xcosy=e, then dxdy at (1,π) is
(A) e
(B) siny
(C) cosy
(D) sinycosy
Solution
Hint : In the given problem, we are required to differentiate the implicit function siny+e−xcosy=e with respect to x and find the value of derivative for point lying on the curve (1,π). Since, siny+e−xcosy=e is an implicit function, so we will have to differentiate the function with the implicit method of differentiation. So, differentiation of siny+e−xcosy=e with respect to x will be done layer by layer using the chain rule of differentiation as in the given function, we cannot isolate the variables x and y. After differentiating, we will put the given values of x and y to get to the final answer.
Complete step-by-step answer :
So, we have, siny+e−xcosy=e
Differentiating both sides of the equation with respect to x, we get,
dxd(siny)+dxd(e−xcosy)=dxd(e)
We know that derivatives of constant terms is equal to zero. So, we get,
⇒dxd(siny)+dxd(e−xcosy)=0
Now, we use the chain rule of differentiation dxd[f(g(x))]=f′(g(x))×g′(x), we get,
⇒cosy×dxdy+dxd(e−xcosy)=0
Now, we know that derivative of exponential function ex is ex. So, we get,
⇒cosy×dxdy+e−xcosy×dxd(−xcosy)=0
Using product rule of differentiation, we get,
⇒cosy×dxdy+e−xcosy×[−x×dxd(cosy)+(cosy)×dxd(−x)]=0
Simplifying the expression, we get,
⇒cosy×dxdy+e−xcosy×[xsiny×dxdy−cosy]=0
Now, opening the brackets,
⇒cosy×dxdy+(e−xcosy)xsiny×dxdy−cosy(e−xcosy)=0
Taking dxdy common from terms, we get,
⇒dxdy[cosy+(e−xcosy)xsiny]−cosy(e−xcosy)=0
Isolating the term dxdy,
⇒dxdy=cosy+(e−xcosy)xsinycosy(e−xcosy)
Putting the values x=1 and y=π, we get,
⇒dxdy=cosπ+(e−(1)cosπ)(1)sinπcosπ(e−(1)cosπ)
Substituting the values of sine and cosine for standard angles, we get,
⇒dxdy=−1−e
Cancelling common factors in numerator and denominator, we get,
⇒dxdy=e
So, we get the value of dxdy as e.
Therefore, option (A) is the correct answer.
So, the correct answer is “Option A”.
Note : Implicit functions are those functions that involve two variables and the two variables are not separable and cannot be isolated from each other. Hence, we have to follow a certain method to differentiate such functions and also apply the chain rule of differentiation. We must remember the simple derivatives of basic functions to solve such problems. One should use the simplification rules in order to simplify the expression. We should make sure that the calculations are correct to get to the required answer.