Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If Sin(x+y)+Cos(x+y)=Log(x+y),Sin (x + y)+Cos(x + y) = Log (x + y), then d2ydx2\frac {d^2y}{dx^2}=

A

1

B

-1

C

0

D

yx\frac {-y}{x}

Answer

0

Explanation

Solution

We have
sin(x+y)+cos(x+y)=log(x+y)\sin (x+y)+\cos (x+y)=\log (x+y)
On differentiating both sides, we get
cos(x+y)(1+dydx)sin(x+y)(1+dydx)\cos (x+y)\left(1+\frac{d y}{d x}\right)-\sin (x+y)\left(1+\frac{d y}{d x}\right)
=1x+y(1+dydx)=\frac{1}{x+y}\left(1+\frac{d y}{d x}\right)
\Rightarrow \frac{d y}{d x}+1=0 \\\
dydx=1\Rightarrow \frac{d y}{d x}=-1
d2ydx2=0\Rightarrow \frac{d^{2} y}{d x^{2}}=0