Question
Question: If \(\sin x + \sin^{2}x = 1\), then the value of \(\cos^{12}x + 3\cos^{10}x + 3\cos^{8}x + \cos^{6}...
If sinx+sin2x=1, then the value of
cos12x+3cos10x+3cos8x+cos6x−2 is equal to
A
0
B
1
C
– 1
D
2
Answer
– 1
Explanation
Solution
We have, sinx+sin2x=1
or sinx=1−sin2x or sinx=cos2x
∴ cos12x+3cos10x+3cos8x+cos6x−2
=sin6x+3sin5x+3sin4x+sin3x−2
=(sin2x)3+3(sin2x)2sinx+3(sin2x)(sinx)2+(sinx)3−2
=(sin2x+sinx)3−2=(1)3−2 [∵sinx+sin2x=1(given)]
= – 1.