Solveeit Logo

Question

Question: If \(\sin x + \sin^{2}x = 1\), then the value of \(\cos^{12}x + 3\cos^{10}x + 3\cos^{8}x + \cos^{6}...

If sinx+sin2x=1\sin x + \sin^{2}x = 1, then the value of

cos12x+3cos10x+3cos8x+cos6x2\cos^{12}x + 3\cos^{10}x + 3\cos^{8}x + \cos^{6}x - 2 is equal to

A

0

B

1

C

– 1

D

2

Answer

– 1

Explanation

Solution

We have, sinx+sin2x=1\sin x + \sin^{2}x = 1

or sinx=1sin2x\sin x = 1 - \sin^{2}x or sinx=cos2x\sin x = \cos^{2}x

cos12x+3cos10x+3cos8x+cos6x2\cos^{12}x + 3\cos^{10}x + 3\cos^{8}x + \cos^{6}x - 2

=sin6x+3sin5x+3sin4x+sin3x2= \sin^{6}x + 3\sin^{5}x + 3\sin^{4}x + \sin^{3}x - 2

=(sin2x)3+3(sin2x)2sinx+3(sin2x)(sinx)2+(sinx)32= (\sin^{2}x)^{3} + 3(\sin^{2}x)^{2}\sin x + 3(\sin^{2}x)(\sin x)^{2} + (\sin x)^{3} - 2

=(sin2x+sinx)32=(1)32= (\sin^{2}x + \sin x)^{3} - 2 = (1)^{3} - 2 [sinx+sin2x=1(given)]\lbrack\because\sin x + \sin^{2}x = 1(\text{given})\rbrack

= – 1.