Solveeit Logo

Question

Question: If \(\sin x + \sin^{2}x = 1,\) then \(\cos^{8}x + 2\cos^{6}x + \cos^{4}x =\)...

If sinx+sin2x=1,\sin x + \sin^{2}x = 1, then cos8x+2cos6x+cos4x=\cos^{8}x + 2\cos^{6}x + \cos^{4}x =

A

0

B

– 1

C

2

D

1

Answer

1

Explanation

Solution

We have sinx+sin2x=1sinx=cos2x\sin x + \sin^{2}x = 1 \Rightarrow \sin x = \cos^{2}x

cos8x+2cos6x+cos4x=sin4x+2sin3x+sin2x\cos^{8}x + 2\cos^{6}x + \cos^{4}x = \sin^{4}x + 2\sin^{3}x + \sin^{2}x

=(sinx+sin2x)2=1= (\sin x + \sin^{2}x)^{2} = 1.