Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sinxsiny=12\sin x- \sin y = \frac {1}{2} and cosxcosy=1\cos x- \cos y = 1, then tan(x+y)\tan(x + y) is equal to

A

38\frac {3}{8}

B

38-\frac{3}{8}

C

43\frac {4}{3}

D

43-\frac {4}{3}

Answer

43\frac {4}{3}

Explanation

Solution

Given,
sinxsiny=12...(i)\sin x-\sin y=\frac{1}{2}\,\,\,\,\,\,\,\,...(i)
and cosxcosy=1...(ii) \cos x-\cos y=1 \,\,\,\,\,\,\,\,...(ii)
2cosx+y2sinxy2=12...(iii)\Rightarrow 2 \cos \frac{x+y}{2} \cdot \sin \frac{x-y}{2}=\frac{1}{2} \,\,\,\,\,\,\,\,...(iii)
and 2sinx+y2sinxy2=1...(iv)-2 \sin \frac{x+y}{2} \cdot \sin \frac{x-y}{2}=1\,\,\,\,\,\,\,\,...(iv)
On dividing E (iv) by E (iii), we get
tan(x+y2)=2-\tan \left(\frac{x+y}{2}\right)=2
tan(x+y2)=2...(v)\Rightarrow \tan \left(\frac{x+y}{2}\right)=-2\,\,\,\,\,\,\,\,...(v)
Now, tan(x+y)=2tan(x+y2)1tan2(x+y2)\tan (x+y)=\frac{2 \tan \left(\frac{x+y}{2}\right)}{1-\tan ^{2}\left(\frac{x+y}{2}\right)}
(tan2θ=2tanθ1tan2θ)\left(\because \tan 2\,\theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)
=2(2)1(2)2=\frac{2(-2)}{1-(-2)^{2}}\,\,\,\,\,\,[using E (v)]
=414=43=43=\frac{-4}{1-4}=\frac{-4}{-3}=\frac{4}{3}