Solveeit Logo

Question

Question: If \( \sin x + \sin y = \dfrac{3}{4} \) and \( \sin x - \sin y = \dfrac{2}{5} \) , then \( \dfrac{{\...

If sinx+siny=34\sin x + \sin y = \dfrac{3}{4} and sinxsiny=25\sin x - \sin y = \dfrac{2}{5} , then tan(xy2)tan(x+y2)=?\dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}} = ?
(A) 158\dfrac{{15}}{8}
(B) 815\dfrac{8}{{15}}
(C) 310\dfrac{3}{{10}}
(D) 103\dfrac{{10}}{3}

Explanation

Solution

Hint : Use the transformation formulae of sinx±siny\sin x \pm \sin y . Then divide both the equations to write then in terms of tan. Then substitute the given values in the equation you get to solve the question. Be careful about the division of the fractions while solving it.

Complete step-by-step answer :
By using the transformation formulae, we can write
sinx+siny=2sin(x+y2)cos(xy2)\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) . . . (1)
and
sinxsiny=2cos(x+y2)sin(xy2)\sin x - \sin y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right) . . . (2)
By dividing equation (2) by equation (1), we get
sinxsinysinx+siny=2cos(x+y2)sin(xy2)2sin(x+y2)cos(xy2)\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)}}
By cancelling the common terms and rearranging it, we can write
sinxsinysinx+siny=sin(xy2)cos(xy2)×1sin(x+y2)cos(x+y2)\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{\cos \left( {\dfrac{{x - y}}{2}} \right)}} \times \dfrac{1}{{\dfrac{{\sin \left( {\dfrac{{x + y}}{2}} \right)}}{{\cos \left( {\dfrac{{x + y}}{2}} \right)}}}} (x=11x)\left( {\because x = \dfrac{1}{{\dfrac{1}{x}}}} \right)
We know that,
sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta
Using this property, we can write the above equation as
sinxsinysinx+siny=tan(xy2)tan(x+y2)\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}}
Now, it is given in the question that,
sinxsiny=25\sin x - \sin y = \dfrac{2}{5}
sinx+siny=34\sin x + \sin y = \dfrac{3}{4}
Substituting the given values in the above equation. We get
2534=tan(xy2)tan(x+y2)\dfrac{{\dfrac{2}{5}}}{{\dfrac{3}{4}}} = \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}}
Rearranging it we can write
tan(xy2)tan(x+y2)=2×45×3\dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}} = \dfrac{{2 \times 4}}{{5 \times 3}} (abpq=ab×qp)\left( {\because \dfrac{{\dfrac{a}{b}}}{{\dfrac{p}{q}}} = \dfrac{a}{b} \times \dfrac{q}{p}} \right)
tan(xy2)tan(x+y2)=815\Rightarrow \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}} = \dfrac{8}{{15}}
Therefore, from the above explanation, the correct answer is, option (B) 815\dfrac{8}{{15}}
So, the correct answer is “Option B”.

Note : The key point of this question was to remember the transformation formula. It is not that you won’t be able to solve this question without the transformation formula. The alternative would be to right tan in terms of sin and cos and then expand sin(x±y)\sin (x \pm y) and cos(x±y)\cos (x \pm y) . The simplify the equation formed until it looks at the form that is given in the question. And then substitute the values in it to get the answer. This would be a long method. Knowing transformation formulae made it look short and easy.