Solveeit Logo

Question

Question: If \(\sin x + \sin y = 3(\cos y - \cos x),\) then the value of \(\frac{\sin 3x}{\sin 3y}\) i...

If sinx+siny=3(cosycosx),\sin x + \sin y = 3(\cos y - \cos x), then the value of sin3xsin3y\frac{\sin 3x}{\sin 3y} i

A

1

B

– 1

C

0

D

None of these

Answer

– 1

Explanation

Solution

We have sinx+siny=3(cosycosx)\sin x + \sin y = 3(\cos y - \cos x)

sinx+3cosx=3cosysiny\Rightarrow \sin x + 3\cos x = 3\cos y - \sin y …..(i)

rcos(xα)=rcos(y+α),\Rightarrow r\cos(x - \alpha) = r\cos(y + \alpha),

where r=10,tanα=13r = \sqrt{10},\tan\alpha = \frac{1}{3}

xα=±(y+α)x=y\Rightarrow x - \alpha = \pm (y + \alpha) \Rightarrow x = - y or x+y=2αx + y = 2\alpha

Clearly, x=yx = - ysatisfies (i); 6musin3xsin3y=sin3ysin3y=1\therefore\mspace{6mu}\frac{\sin 3x}{\sin 3y} = \frac{- \sin 3y}{\sin 3y} = - 1.