Solveeit Logo

Question

Question: If \[\sin x + \sin 3x + \sin 5x = 0\] , then the solution is?...

If sinx+sin3x+sin5x=0\sin x + \sin 3x + \sin 5x = 0 , then the solution is?

Explanation

Solution

We are given sinx+sin3x+sin5x=0sinx + sin3x + sin5x = 0 and we are trying to find the value of x. We use the formula of sina+sinb=2sina+b2cosab2\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2} on sin5x+sinx\sin 5x + \sin x we get answer in terms of sin3x\sin 3x. Next, we take sin3x\sin 3xcommon and then equating it with zero we find our solution.

Complete step by step solution:
sinx+sin3x+sin5x=0\sin x + \sin 3x + \sin 5x = 0
Taking two terms together, we get,
(sin5x+sinx)+sin3x=0\Rightarrow \left( {\sin 5x + \sin x} \right) + \sin 3x = 0
Again, we have, sina+sinb=2sina+b2cosab2\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2} , using, this we get,
2sin3xcos2x+sin3x=0\Rightarrow 2sin3xcos2x + sin3x = 0
Taking, sin3x\sin 3x common, we get,
sin3x(2cos2x+1)=0\Rightarrow sin3x\left( {2cos2x + 1} \right) = 0
Now,
sin3x=0  or  2cos2x+1=0\sin 3x = 0\;or\;2\cos 2x + 1 = 0
sin3x=0  or,  cos2x=12\Rightarrow \sin 3x = 0\;or,\; \cos 2x = - \dfrac{1}{2}
Now,   sin3x=03x=nπx=nπ3,nZ\;\sin 3x = 0 \Rightarrow 3x = n\pi \Rightarrow x = \dfrac{{n\pi }}{3},n \in Z as, sinnπ=0\sin n\pi = 0
And,   cos2x=12\;\cos 2x = - \dfrac{1}{2}
cos2x=cos2π3\cos 2x = \cos \dfrac{{2\pi }}{3} as, cos2π3=12\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}
2x=2mπ±2π3,mZ\Rightarrow 2x = 2m\pi \pm \dfrac{{2\pi }}{3},m \in Z
x=mπ±π3,mZ\Rightarrow x = m\pi \pm \dfrac{\pi }{3},m \in Z

Hence, the general solution of the given equation is:
x=nπ3x = \dfrac{{n\pi }}{3}​ or, x=mπ±π3x = m\pi \pm \dfrac{\pi }{3} , where m,nZm,n \in Z

Note:
To find, sinnπ=0\sin n\pi = 0 , we get,
Recall that Euler's formula is eix=cosx+isinx{e^{ix}} = cosx + isinx , When x=πx = \pi ,
we have eiπ=cosπ+isinπ=1{e^{i\pi }} = cos\pi + isin\pi = - 1 eiπ+1=0 \Rightarrow {e^{i\pi }} + 1 = 0
This implies that sinnπ=0\sin n\pi = 0 for all nZn \in \mathbb{Z}.