Question
Question: If \[\sin x + \sin 3x + \sin 5x = 0\] , then the solution is?...
If sinx+sin3x+sin5x=0 , then the solution is?
Solution
We are given sinx+sin3x+sin5x=0 and we are trying to find the value of x. We use the formula of sina+sinb=2sin2a+bcos2a−b on sin5x+sinx we get answer in terms of sin3x. Next, we take sin3xcommon and then equating it with zero we find our solution.
Complete step by step solution:
sinx+sin3x+sin5x=0
Taking two terms together, we get,
⇒(sin5x+sinx)+sin3x=0
Again, we have, sina+sinb=2sin2a+bcos2a−b , using, this we get,
⇒2sin3xcos2x+sin3x=0
Taking, sin3x common, we get,
⇒sin3x(2cos2x+1)=0
Now,
sin3x=0or2cos2x+1=0
⇒sin3x=0or,cos2x=−21
Now, sin3x=0⇒3x=nπ⇒x=3nπ,n∈Z as, sinnπ=0
And, cos2x=−21
cos2x=cos32π as, cos32π=−21
⇒2x=2mπ±32π,m∈Z
⇒x=mπ±3π,m∈Z
Hence, the general solution of the given equation is:
x=3nπ or, x=mπ±3π , where m,n∈Z
Note:
To find, sinnπ=0 , we get,
Recall that Euler's formula is eix=cosx+isinx , When x=π ,
we have eiπ=cosπ+isinπ=−1 ⇒eiπ+1=0
This implies that sinnπ=0 for all n∈Z.