Solveeit Logo

Question

Question: If \(\sin x + {\sin ^2}x = 1\) then the value of \({\cos ^2}x + {\cos ^4}x + {\cot ^4}x - {\cot ^2}x...

If sinx+sin2x=1\sin x + {\sin ^2}x = 1 then the value of cos2x+cos4x+cot4xcot2x{\cos ^2}x + {\cos ^4}x + {\cot ^4}x - {\cot ^2}x is?
A) 11
B) 00
C)22
D) None of these

Explanation

Solution

Hint : The given question deals with finding the value of trigonometric expression doing basic simplification of trigonometric functions by using some of the trigonometric identities such as sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 and cot2x+1=cosec2x{\cot ^2}x + 1 = \cos e{c^2}x. We will solve the question in two parts and then add both the portions at the end to get to the final answer.

Complete step-by-step answer :
In the given problem we have to find the value of trigonometric expression given to us in the problem itself.
So, we have, cos2x+cos4x+cot4xcot2x{\cos ^2}x + {\cos ^4}x + {\cot ^4}x - {\cot ^2}x.
We are given that sinx+sin2x=1\sin x + {\sin ^2}x = 1.
Shifting the sin2x{\sin ^2}x term to the right side of the equation, we get,
sinx=1sin2x\Rightarrow \sin x = 1 - {\sin ^2}x
Now we know the trigonometric identity cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x, we get,
sinx=cos2x\Rightarrow \sin x = {\cos ^2}x
Now squaring both the sides of the equation. We get,
sin2x=cos4x\Rightarrow {\sin ^2}x = {\cos ^4}x
Substitute the value of sin2x{\sin ^2}x by 1cos2x1 - {\cos ^2}x. We get,
1cos2x=cos4x\Rightarrow 1 - {\cos ^2}x = {\cos ^4}x
Shifting the cos2x{\cos ^2}x term to the right side of the equation. We get,
1=cos2x+cos4x(1)\Rightarrow 1 = {\cos ^2}x + {\cos ^4}x - - - - - \left( 1 \right)
Again we have
sinx+sin2x=1\sin x + {\sin ^2}x = 1
Divide both sides of the equation by sin2x{\sin ^2}x.We get,
sinxsin2x+sin2xsin2x=1sin2x\Rightarrow \dfrac{{\sin x}}{{{{\sin }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\sin }^2}x}} = \dfrac{1}{{{{\sin }^2}x}}
cosecx+1=cosec2x\Rightarrow \cos ecx + 1 = \cos e{c^2}x
Shifting 1 to the right side of the equation. We get,
cosecx=cosec2x1\Rightarrow \cos ecx = \cos e{c^2}x - 1
Now we know the trigonometric identitycot2x=1cosec2x{\cot ^2}x = 1 - \cos e{c^2}x. So, we get,
cosecx=cot2x\Rightarrow \cos ecx = {\cot ^2}x
Squaring both the sides of the equation. We get,
cosecx2x=cot4x\Rightarrow \cos ec{x^2}x = {\cot ^4}x
Substitute the value of cosec2x\cos e{c^2}x by 1+cot2x1 + {\cot ^2}x. We get,
1+cot2x=cot4x\Rightarrow 1 + {\cot ^2}x = {\cot ^4}x
Shifting the cot2x{\cot ^2}xterm to the right side of the equation. We get,
cot4xcot2x=1(2)\Rightarrow {\cot ^4}x - {\cot ^2}x = 1 - - - - - \left( 2 \right)
Now adding the equations 11 and 22. We get,
cos2x+cos4x+cot4xcot2x=1+1=2\Rightarrow {\cos ^2}x + {\cos ^4}x + {\cot ^4}x - {\cot ^2}x = 1 + 1 = 2
Therefore, the value of trigonometric expression cos2x+cos4x+cot4xcot2x{\cos ^2}x + {\cos ^4}x + {\cot ^4}x - {\cot ^2}x is equal to 22.
So, the correct answer is “Option C”.

Note : There are six trigonometric ratios: sinθ\sin \theta , cosθ\cos \theta , tanθ\tan \theta , cosecθ\cos ec\theta , secθ\sec \theta and cotθ\cot \theta . Basic trigonometric identities include sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1, sec2θ=tan2θ+1{\sec ^2}\theta = {\tan ^2}\theta + 1 and cosec2θ=cot2θ+1\cos e{c^2}\theta = {\cot ^2}\theta + 1. These identities are of vital importance for solving any question involving trigonometric functions and identities.