Solveeit Logo

Question

Mathematics Question on Trigonometry

If sinx=35\sin x = -\frac{3}{5}, where π<x<3π2\pi<x<\frac{3\pi}{2}, then 80(tan2xcosx)80(\tan^2 x - \cos x) is equal to:

A

109

B

108

C

18

D

19

Answer

109

Explanation

Solution

Given:

sinx=35,π<x<3π2.\sin x = -\frac{3}{5}, \quad \pi < x < \frac{3\pi}{2}.

Step 1: Use the Pythagorean identity:

cos2x=1sin2x=1(35)2=1925=1625.\cos^2 x = 1 - \sin^2 x = 1 - \left(-\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25}.

Step 2: Determine cosx\cos x:

Since cosx<0\cos x < 0 in the third quadrant:

cosx=45.\cos x = -\frac{4}{5}.

Step 3: Calculate tanx\tan x:

tanx=sinxcosx=3545=34.\tan x = \frac{\sin x}{\cos x} = \frac{-\frac{3}{5}}{-\frac{4}{5}} = \frac{3}{4}.

Step 4: Compute 80(tan2xcosx)80(\tan^2 x - \cos x):

tan2x=(34)2=916,80(tan2xcosx)=80(916(45)).\tan^2 x = \left(\frac{3}{4}\right)^2 = \frac{9}{16}, \quad 80\left(\tan^2 x - \cos x\right) = 80\left(\frac{9}{16} - \left(-\frac{4}{5}\right)\right).

Step 5: Simplify:

80(916+45)=80(4580+6480)=8010980=109.80\left(\frac{9}{16} + \frac{4}{5}\right) = 80\left(\frac{45}{80} + \frac{64}{80}\right) = 80 \cdot \frac{109}{80} = 109.

Final Answer:

109.\boxed{109.}