Solveeit Logo

Question

Question: If \(\sin x=\dfrac{4}{5}\), how do you find \(\sin 2x\) ?...

If sinx=45\sin x=\dfrac{4}{5}, how do you find sin2x\sin 2x ?

Explanation

Solution

We have been given an equation of sinx\sin x. We use the multiple angle formula of sin2x=2sinxcosx\sin 2x=2\sin x\cos x. It’s given that sinx=45\sin x=\dfrac{4}{5}. From that we find the other ratio of cos at xx of that angle to find the solution. We also use the representation of a right-angle triangle with height and hypotenuse ratio being 45\dfrac{4}{5} and the angle being xx.

Complete step by step answer:
The given equation of sinx\sin x is sinx=45\sin x=\dfrac{4}{5}. We try to convert sin2x\sin 2x using the multiple angle formula of sin2x=2sinxcosx\sin 2x=2\sin x\cos x. Therefore, to find the answer of sin2x\sin 2x, we need to find the answer of cosx\cos x.

We use the identity formula of (sinx)2+(cosx)2=1{{\left( \sin x \right)}^{2}}+{{\left( \cos x \right)}^{2}}=1.
We can put the value of sinx=45\sin x=\dfrac{4}{5} in the equation of (sinx)2+(cosx)2=1{{\left( \sin x \right)}^{2}}+{{\left( \cos x \right)}^{2}}=1.
Putting the value of sinx\sin x, we get (45)2+(cosx)2=1{{\left( \dfrac{4}{5} \right)}^{2}}+{{\left( \cos x \right)}^{2}}=1.
Now we perform the binary operations.
(45)2+(cosx)2=1 (cosx)2=11625=925 (cosx)=±35 {{\left( \dfrac{4}{5} \right)}^{2}}+{{\left( \cos x \right)}^{2}}=1 \\\ \Rightarrow {{\left( \cos x \right)}^{2}}=1-\dfrac{16}{25}=\dfrac{9}{25} \\\ \Rightarrow \left( \cos x \right)=\pm \dfrac{3}{5} \\\

The two different values of cosx\cos x is dependent on the value of the angle xx.Now we put the values of sinx=45\sin x=\dfrac{4}{5} and (cosx)=±35\left( \cos x \right)=\pm \dfrac{3}{5} in the equation of sin2x=2sinxcosx\sin 2x=2\sin x\cos x.So,
sin2x=2(45)(±35) sin2x=±2425\sin 2x=2\left( \dfrac{4}{5} \right)\left( \pm \dfrac{3}{5} \right)\\\ \therefore\sin 2x=\pm \dfrac{24}{25}

Therefore, the value of sin2x\sin 2x is ±2425\pm \dfrac{24}{25}.

Note: The trigonometric functions of multiple angles are the multiple angle formula. Double and triple angles formulas are there under the multiple angle formulas. Sine, tangent and cosine are the general functions for the multiple angle formula.