Solveeit Logo

Question

Question: If \(\sin x = \dfrac{1}{4}\) , x is in the second quadrant. Find the value of \(\sin \dfrac{x}{2}\) ...

If sinx=14\sin x = \dfrac{1}{4} , x is in the second quadrant. Find the value of sinx2\sin \dfrac{x}{2} .

Explanation

Solution

The value of sinx is given. Find cosx.
Given that x is in second quadrant i.e. π2<xπ\dfrac{\pi }{2} < x \leqslant \pi , ∴ cosx is negative.
So we first find cosx.
Now, note that cosx=12sin2x2\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}, i.e. 2sin2x2=1cosx2{\sin ^2}\dfrac{x}{2} = 1 - \cos x
Therefore find sinx2\sin \dfrac{x}{2}.

Complete step-by-step answer:
Given, sinx=14\sin x = \dfrac{1}{4}
Also, x is in the second quadrant. Therefore, π2<xπ\dfrac{\pi }{2} < x \leqslant \pi
We know,
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
cos2x=1sin2x\Rightarrow {\cos ^2}x = 1 - {\sin ^2}x
On taking square root we get,
cosx=±1sin2x\Rightarrow \cos x = \pm \sqrt {1 - {{\sin }^2}x}
On substituting the value of sinx we get,
cosx=±1(14)2\Rightarrow \cos x = \pm \sqrt {1 - {{\left( {\dfrac{1}{4}} \right)}^2}}
On simplification we get,
cosx=±1116=±1516\Rightarrow \cos x = \pm \sqrt {1 - \dfrac{1}{{16}}} = \pm \sqrt {\dfrac{{15}}{{16}}}
Since, x lies in second quadrant, therefore cosx is negative,
cosx=154\Rightarrow \cos x = - \dfrac{{\sqrt {15} }}{4}
Now, we know
2sin2x2=1cosx2{\sin ^2}\dfrac{x}{2} = 1 - \cos x
On dividing by 2 and taking square root we get,
sinx2=±1cosx2\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos x}}{2}}
On substituting the value of cosx we get,
sinx2=±1(154)2\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \left( { - \dfrac{{\sqrt {15} }}{4}} \right)}}{2}}
On simplification we get,
sinx2=±1+1542\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt {15} }}{4}}}{2}}
As, π2 < xππ4 < x2π2\dfrac{\pi }{2}{\text{ < x}} \leqslant \pi \Rightarrow \dfrac{\pi }{4}{\text{ < }}\dfrac{x}{2} \leqslant \dfrac{\pi }{2} ,hence sin  x2{\text{sin\;}}\dfrac{x}{2} positive asx2\dfrac{x}{2} is in the first quadrant
sinx2=4+158\Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{4 + \sqrt {15} }}{8}}
Therefore, the value of sinx2\sin \dfrac{x}{2} is 4+158\sqrt {\dfrac{{4 + \sqrt {15} }}{8}} .

Note: Note the following important formulae:
cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
sin(x)=sinx\sin ( - x) = - \sin x
cos(x)=cosx\cos ( - x) = \cos x
tan(x)=tanx\tan ( - x) = - \tan x
sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention:

sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
cos2x=cos2xsin2x=12sin2x=2cos2x1\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1
tan2x=2tanx1tan2x=2cotxtanx\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}