Question
Question: If \(\sin x = \dfrac{1}{4}\) , x is in the second quadrant. Find the value of \(\sin \dfrac{x}{2}\) ...
If sinx=41 , x is in the second quadrant. Find the value of sin2x .
Solution
The value of sinx is given. Find cosx.
Given that x is in second quadrant i.e. 2π<x⩽π, ∴ cosx is negative.
So we first find cosx.
Now, note that cosx=1−2sin22x, i.e. 2sin22x=1−cosx
Therefore find sin2x.
Complete step-by-step answer:
Given, sinx=41
Also, x is in the second quadrant. Therefore, 2π<x⩽π
We know,
sin2x+cos2x=1
⇒cos2x=1−sin2x
On taking square root we get,
⇒cosx=±1−sin2x
On substituting the value of sinx we get,
⇒cosx=±1−(41)2
On simplification we get,
⇒cosx=±1−161=±1615
Since, x lies in second quadrant, therefore cosx is negative,
⇒cosx=−415
Now, we know
2sin22x=1−cosx
On dividing by 2 and taking square root we get,
⇒sin2x=±21−cosx
On substituting the value of cosx we get,
⇒sin2x=±21−(−415)
On simplification we get,
⇒sin2x=±21+415
As, 2π < x⩽π⇒4π < 2x⩽2π ,hence sin2x positive as2x is in the first quadrant
⇒sin2x=84+15
Therefore, the value of sin2x is 84+15.
Note: Note the following important formulae:
cosx=secx1 , sinx=cosecx1 , tanx=cotx1
sin2x+cos2x=1
sec2x−tan2x=1
cosec2x−cot2x=1
sin(−x)=−sinx
cos(−x)=cosx
tan(−x)=−tanx
sin(2nπ±x)=sinx , period 2π or 360∘
cos(2nπ±x)=cosx , period 2π or 360∘
tan(nπ±x)=tanx , period π or 180∘
Sign convention:
sin2x=2sinxcosx
cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1
tan2x=1−tan2x2tanx=cotx−tanx2