Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sinx+cosecx=2\sin \, x + cosec \, x = 2 then sinnx+cosecnx(n>2)\sin^n \, x + cosec^n \, x (n > 2) is equal to

A

2

B

2n2^n

C

2n12^{n - 1}

D

none of these

Answer

2

Explanation

Solution

Given sinx+cosecx=2\sin x + cosec x = 2 sinx+1sinx=2\Rightarrow \sin x + \frac{1}{\sin x} = 2 sin2x2sinx+1=0\Rightarrow \sin^{2} x -2 \sin x + 1 = 0 (sinx1)2=0\Rightarrow \left(\sin x -1\right)^{2} = 0 sinx=1\Rightarrow \sin x = 1 and hence cosecx=1cosec \, x = 1 sinnx+cosecnx=1n+1n=2. \therefore \sin^{n} x + cosec ^{n} x = 1^{n} + 1^{n} = 2.