Question
Question: If \(\sin x+\cos x+\tan x+\cot x+\sec x+\operatorname{cosec}x=7\) and \(\sin 2x=a-b\sqrt{c}\), then ...
If sinx+cosx+tanx+cotx+secx+cosecx=7 and sin2x=a−bc, then a−b+2c is
a. 0
b. 14
c. 28
d. 42
Solution
This is a question related to the trigonometric ratios. So, here, we will convert all the trigonometric functions in terms of sin x and cos x and after that convert them to sin 2x. We will solve using the following relations,
tanx=cosxsinx,cotx=sinxcosx,secx=cosx1,cosecx=sinx1sin2x+cos2x=1(sinx+cosx)2=1+sin2xsin2x=2sinxcosx
Complete step by step answer:
Now, we have been given in the question that,
sinx+cosx+tanx+cotx+secx+cosecx=7
We will express the above equation in terms of sin x and cos x, so for that we can write tanx=cosxsinx,cotx=sinxcosx,secx=cosx1,cosecx=sinx1
So, on substituting these values in the equation, we will get the equation as,
(sinx+cosx)+cosxsinx+sinxcosx+cosx1+sinx1=7
Now, on taking the LCM of the terms, cosxsinxandsinxcosx and also cosx1andsinx1, we will get,
(sinx+cosx)+sinxcosxsin2x+cos2x+sinxcosxsinx+cosx=7
On taking (sin x + cos x) common from the terms (sinx+cosx)andsinxcosxsinx+cosx, we get,
(sinx+cosx)[1+sinxcosx1]+sinxcosxsin2x+cos2x=7
Now, we know that sin2x+cos2x=1, so we can write,
(sinx+cosx)[1+sinxcosx1]+sinxcosx1=7
Now, we know that (sinx+cosx)2=1+sin2x, so we can write (sinx+cosx)=1+sin2x.
Also, we know that sin2x=2sinxcosx, so we can write sinxcosx=2sin2x.
So, on substituting these values in our equation, we get,
(1+sin2x)[1+sin2x2]+sin2x2=7
Now, let us consider sin 2x = y. So, we get,
(1+y)[1+y2]+y2=7
On transposing y2 from LHS to RHS, we get,
1+y[1+y2]=7−y2
On taking the LCM of the terms in the RHS and the terms inside the bracket in the LHS, we can further write it as,
1+y[yy+2]=y7y−2
Now, on taking [yy+2] from LHS to RHS, we get,