Solveeit Logo

Question

Question: If \(\sin x + \cos x + \tan x + \cot x + \sec x + \cos ecx = 7\) and \(\sin 2x = a - b\sqrt 7 \), th...

If sinx+cosx+tanx+cotx+secx+cosecx=7\sin x + \cos x + \tan x + \cot x + \sec x + \cos ecx = 7 and sin2x=ab7\sin 2x = a - b\sqrt 7 , then ordered pairs (a,b)(a,b) is,
A. (6,2)(6,2)
B. (8,3)(8,3)
C. (22,8)(22,8)
D. (11,4)(11,4)

Explanation

Solution

To solve the problem we have to first convert the first given condition into only sin\sin and cos\cos terms, as in condition two, there will be only sin\sin and cos\cos terms. Then we will have to perform required operations to convert the first condition into a form like the second condition in order to get the answer.

Complete step by step answer:
The first condition is:
sinx+cosx+tanx+cotx+secx+cosecx=7\sin x + \cos x + \tan x + \cot x + \sec x + \cos ecx = 7
Now, converting tanx,cotx,secx,cosecx\tan x,\cot x,\sec x,\cos ecx into sinx\sin xand cosx\cos xterms. We know that secant and cosecant functions are reciprocals functions of cosine and sine. Also,
tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}
By converting them, we get,
sinx+cosx+(sinxcosx)+(cosxsinx)+(1cosx)+(1sinx)=7\Rightarrow \sin x + \cos x + \left( {\dfrac{{\sin x}}{{\cos x}}} \right) + \left( {\dfrac{{\cos x}}{{\sin x}}} \right) + \left( {\dfrac{1}{{\cos x}}} \right) + \left( {\dfrac{1}{{\sin x}}} \right) = 7
(sinx+cosx)+(sin2x+cos2xsinxcosx)+(sinx+cosxsinxcosx)=7\Rightarrow (\sin x + \cos x) + \left( {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x\cos x}}} \right) + \left( {\dfrac{{\sin x + \cos x}}{{\sin x\cos x}}} \right) = 7

We know the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, so, substituting this value in the equation, we get,
(sinx+cosx)+(1sinxcosx)+(sinx+cosxsinxcosx)=7\Rightarrow (\sin x + \cos x) + \left( {\dfrac{1}{{\sin x\cos x}}} \right) + \left( {\dfrac{{\sin x + \cos x}}{{\sin x\cos x}}} \right) = 7
Taking the term (1sinxcosx)\left( {\dfrac{1}{{\sin x\cos x}}} \right) on the Right Hand Side, we get,
(sinx+cosx)+(sinx+cosxsinxcosx)=7(1sinxcosx)\Rightarrow (\sin x + \cos x) + \left( {\dfrac{{\sin x + \cos x}}{{\sin x\cos x}}} \right) = 7 - \left( {\dfrac{1}{{\sin x\cos x}}} \right)
Taking (sinx+cosx)(\sin x + \cos x) common in Left Hand Side, we get,
(sinx+cosx)(1+1sinxcosx)=7(1sinxcosx)\Rightarrow \left( {\sin x + \cos x} \right)\left( {1 + \dfrac{1}{{\sin x\cos x}}} \right) = 7 - \left( {\dfrac{1}{{\sin x\cos x}}} \right)

Now, we know the trigonometric formula sin2x=2sinxcosx\sin 2x = 2\sin x\cos x. So, we get,
(sinx+cosx)(1+2sin2x)=7(2sin2x)\Rightarrow \left( {\sin x + \cos x} \right)\left( {1 + \dfrac{2}{{\sin 2x}}} \right) = 7 - \left( {\dfrac{2}{{\sin 2x}}} \right)
Now, squaring both sides, we get,
(sinx+cosx)2(1+2sin2x)2=[7(2sin2x)]2\Rightarrow {\left( {\sin x + \cos x} \right)^2}{\left( {1 + \dfrac{2}{{\sin 2x}}} \right)^2} = {\left[ {7 - \left( {\dfrac{2}{{\sin 2x}}} \right)} \right]^2}
Using algebraic identities for simplification of the expression, we get,
(sin2x+cos2x+2sinxcosx)(1+4sin2x+4sin22x)=4928sin2x+4sin22x\Rightarrow ({\sin ^2}x + {\cos ^2}x + 2\sin x\cos x)\left( {1 + \dfrac{4}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}}} \right) = 49 - \dfrac{{28}}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}}
(1+sin2x)(1+4sin2x+4sin22x)=4928sin2x+4sin22x\Rightarrow (1 + \sin 2x)\left( {1 + \dfrac{4}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}}} \right) = 49 - \dfrac{{28}}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}}
[Using, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 and sin2x=2sinxcosx\sin 2x = 2\sin x\cos x]

Now, opening the brackets, we get,
(1+4sin2x+4sin22x)+sin2x(1+4sin2x+4sin22x)=4928sin2x+4sin22x\Rightarrow \left( {1 + \dfrac{4}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}}} \right) + \sin 2x\left( {1 + \dfrac{4}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}}} \right) = 49 - \dfrac{{28}}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}}
1+4sin2x+4sin22x+sin2x+4+4sin2x=4928sin2x+4sin22x\Rightarrow 1 + \dfrac{4}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}} + \sin 2x + 4 + \dfrac{4}{{\sin 2x}} = 49 - \dfrac{{28}}{{\sin 2x}} + \dfrac{4}{{{{\sin }^2}2x}}
Now, on simplifying the equation, we get,
8sin2x+sin2x+5=4928sin2x\Rightarrow \dfrac{8}{{\sin 2x}} + \sin 2x + 5 = 49 - \dfrac{{28}}{{\sin 2x}}
Making Right Hand Side 00 by changing the side of all terms to Left Hand Side, we get,
8sin2x+sin2x+549+28sin2x=0\Rightarrow \dfrac{8}{{\sin 2x}} + \sin 2x + 5 - 49 + \dfrac{{28}}{{\sin 2x}} = 0
\Rightarrow \dfrac{{36}}{{\sin 2x}} + \sin 2x + 44 = 0 \\\
Multiplying both sides by sin2x\sin 2x, we get,
sin22x+44sin2x+36=0\Rightarrow {\sin ^2}2x + 44\sin 2x + 36 = 0

Now, using Quadratic formula, to solve the above quadratic equation, we get,
\Rightarrow \sin 2x = \dfrac{{ - 44 \pm \sqrt {{{(44)}^2} - 4\left( 1 \right)\left( {36} \right)}\sin 2x = a - b\sqrt 7 }}{{2\left( 1 \right)}}
sin2x=44±19361442(1)\Rightarrow \sin 2x = \dfrac{{ - 44 \pm \sqrt {1936 - 144} }}{{2\left( 1 \right)}}
sin2x=44±17922\Rightarrow \sin 2x = \dfrac{{ - 44 \pm \sqrt {1792} }}{2}
sin2x=44±256×72\Rightarrow \sin 2x = \dfrac{{ - 44 \pm \sqrt {256 \times 7} }}{2}
sin2x=44±1672\Rightarrow \sin 2x = \dfrac{{ - 44 \pm 16\sqrt 7 }}{2}
sin2x=22±87(1)\Rightarrow \sin 2x = - 22 \pm 8\sqrt 7 - - - - \left( 1 \right)
Now, the given value .
Comparing the condition to equation (1)(1), we get,
a=22,b=8a = 22,b = 8
Therefore, the ordered pair (a,b)(a,b) is (22,8)(22,8).

Hence, the correct answer is option C.

Note: The above problem can also be solved by not changing sinxcosx\sin x\cos x into sin2x\sin 2x. Instead we can take sinxcosx=p\sin x\cos x = p and perform the same functions as above and get the result of the quadratic equation. The second condition becomes 2p2p, so we can adjust the values as required. But, the ultimate result will be (22,8)(22,8).