Question
Question: If \(\sin x + \cos x + \tan x + \cot x + \sec x + \cos ecx = 7\) and \(\sin 2x = a - b\sqrt 7 \), th...
If sinx+cosx+tanx+cotx+secx+cosecx=7 and sin2x=a−b7, then ordered pairs (a,b) is,
A. (6,2)
B. (8,3)
C. (22,8)
D. (11,4)
Solution
To solve the problem we have to first convert the first given condition into only sinand costerms, as in condition two, there will be only sinand costerms. Then we will have to perform required operations to convert the first condition into a form like the second condition in order to get the answer.
Complete step by step answer:
The first condition is:
sinx+cosx+tanx+cotx+secx+cosecx=7
Now, converting tanx,cotx,secx,cosecx into sinxand cosxterms. We know that secant and cosecant functions are reciprocals functions of cosine and sine. Also,
tanx=cosxsinx and cotx=sinxcosx
By converting them, we get,
⇒sinx+cosx+(cosxsinx)+(sinxcosx)+(cosx1)+(sinx1)=7
⇒(sinx+cosx)+(sinxcosxsin2x+cos2x)+(sinxcosxsinx+cosx)=7
We know the trigonometric identity sin2x+cos2x=1, so, substituting this value in the equation, we get,
⇒(sinx+cosx)+(sinxcosx1)+(sinxcosxsinx+cosx)=7
Taking the term (sinxcosx1) on the Right Hand Side, we get,
⇒(sinx+cosx)+(sinxcosxsinx+cosx)=7−(sinxcosx1)
Taking (sinx+cosx) common in Left Hand Side, we get,
⇒(sinx+cosx)(1+sinxcosx1)=7−(sinxcosx1)
Now, we know the trigonometric formula sin2x=2sinxcosx. So, we get,
⇒(sinx+cosx)(1+sin2x2)=7−(sin2x2)
Now, squaring both sides, we get,
⇒(sinx+cosx)2(1+sin2x2)2=[7−(sin2x2)]2
Using algebraic identities for simplification of the expression, we get,
⇒(sin2x+cos2x+2sinxcosx)(1+sin2x4+sin22x4)=49−sin2x28+sin22x4
⇒(1+sin2x)(1+sin2x4+sin22x4)=49−sin2x28+sin22x4
[Using, sin2x+cos2x=1 and sin2x=2sinxcosx]
Now, opening the brackets, we get,
⇒(1+sin2x4+sin22x4)+sin2x(1+sin2x4+sin22x4)=49−sin2x28+sin22x4
⇒1+sin2x4+sin22x4+sin2x+4+sin2x4=49−sin2x28+sin22x4
Now, on simplifying the equation, we get,
⇒sin2x8+sin2x+5=49−sin2x28
Making Right Hand Side 0 by changing the side of all terms to Left Hand Side, we get,
⇒sin2x8+sin2x+5−49+sin2x28=0
\Rightarrow \dfrac{{36}}{{\sin 2x}} + \sin 2x + 44 = 0 \\\
Multiplying both sides by sin2x, we get,
⇒sin22x+44sin2x+36=0
Now, using Quadratic formula, to solve the above quadratic equation, we get,
\Rightarrow \sin 2x = \dfrac{{ - 44 \pm \sqrt {{{(44)}^2} - 4\left( 1 \right)\left( {36} \right)}\sin 2x = a - b\sqrt 7 }}{{2\left( 1 \right)}}
⇒sin2x=2(1)−44±1936−144
⇒sin2x=2−44±1792
⇒sin2x=2−44±256×7
⇒sin2x=2−44±167
⇒sin2x=−22±87−−−−(1)
Now, the given value .
Comparing the condition to equation (1), we get,
a=22,b=8
Therefore, the ordered pair (a,b) is (22,8).
Hence, the correct answer is option C.
Note: The above problem can also be solved by not changing sinxcosx into sin2x. Instead we can take sinxcosx=p and perform the same functions as above and get the result of the quadratic equation. The second condition becomes 2p, so we can adjust the values as required. But, the ultimate result will be (22,8).