Solveeit Logo

Question

Question: If \(\sin x + \cos x + \tan x + \cot x + \sec x + \cos ecx = 7\) and \(\sin 2x = a - b\sqrt 7 \) the...

If sinx+cosx+tanx+cotx+secx+cosecx=7\sin x + \cos x + \tan x + \cot x + \sec x + \cos ecx = 7 and sin2x=ab7\sin 2x = a - b\sqrt 7 then ab+14a - b + 14 is divisible by
A. 5
B. 3
C. 0
D. 7

Explanation

Solution

Hint: Simplify the first equation by grouping two terms in order using trigonometric relations. See if we can reduce the first equation in the form of the second equation to then compare the results to find values of aa and bb.

Complete step-by-step answer:
We will try to simplify the first equation and try to bring in a form similar to the second equation. Let us consider first equation from the question:
sinx+cosx+tanx+cotx+secx+ cosecx=7\sin x + \cos x + \tan x + \cot x + \sec x + \ co sec x = 7
We write all the terms in sine and cosine expressions. So we will move ahead as follows:
(sinx+cosx)+sinxcosx+cosxsinx+1cosx+1sinx=7\Rightarrow (\sin x + \cos x) + \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} = 7
We will club together two terms in order and see if we get terms in common.
(sinx+cosx)+(sin2x+cos2x)sinxcosx+(sinx+cosx)sinxcosx=7\Rightarrow (\sin x + \cos x) + \dfrac{{({{\sin }^2}x + {{\cos }^2}x)}}{{\sin x\cos x}} + \dfrac{{(\sin x + \cos x)}}{{\sin x\cos x}} = 7
But we know that, cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1, we get,
(sinx+cosx)+22sinxcosx+2(sinx+cosx)2sinxcosx=7 (sinx+cosx)(1+2sin2x)=72sin2x  \Rightarrow (\sin x + \cos x) + \dfrac{2}{{2\sin x\cos x}} + \dfrac{{2(\sin x + \cos x)}}{{2\sin x\cos x}} = 7 \\\ \Rightarrow (\sin x + \cos x)\left( {1 + \dfrac{2}{{\sin 2x}}} \right) = 7 - \dfrac{2}{{\sin 2x}} \\\
In the last step we used the identity, sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta . Now squaring on both sides, we get,
(sin2x+cos2x+2sinxcosx)(1+2sin2x)2=49+4sin22x28sin2x (1+sin2x)(1+2sin2x)2=49sin22x+428sin2xsin22x  \Rightarrow ({\sin ^2}x + {\cos ^2}x + 2\sin x\cos x){\left( {1 + \dfrac{2}{{\sin 2x}}} \right)^2} = 49 + \dfrac{4}{{{{\sin }^2}2x}} - \dfrac{{28}}{{\sin 2x}} \\\ \Rightarrow (1 + \sin 2x){\left( {1 + \dfrac{2}{{\sin 2x}}} \right)^2} = \dfrac{{49{{\sin }^2}2x + 4 - 28\sin 2x}}{{{{\sin }^2}2x}} \\\
Consider sin2x=t\sin 2x = t, we will get,
(1+t)(t+2)2=49t2+428t (1+t)(t2+4t+4)=49t2+428t t2+4t+4+t3+4t2+4t=49t2+428t t344t2+36t=0 t244t+36=0  \Rightarrow \left( {1 + t} \right){(t + 2)^2} = 49{t^2} + 4 - 28t \\\ \Rightarrow (1 + t)({t^2} + 4t + 4) = 49{t^2} + 4 - 28t \\\ \Rightarrow {t^2} + 4t + 4 + {t^3} + 4{t^2} + 4t = 49{t^2} + 4 - 28t \\\ \Rightarrow {t^3} - 44{t^2} + 36t = 0 \\\ \Rightarrow {t^2} - 44t + 36 = 0 \\\
This is a quadratic equation whose roots are:
t=sin2x=(44)±4424×362 sin2x=22±(4412)(44+12)4 sin2x=22±32×14=22±87  t = \sin 2x = \dfrac{{ - ( - 44) \pm \sqrt {{{44}^2} - 4 \times 36} }}{2} \\\ \sin 2x = 22 \pm \sqrt {\dfrac{{(44 - 12)(44 + 12)}}{4}} \\\ \sin 2x = 22 \pm \sqrt {32 \times 14} = 22 \pm 8\sqrt 7 \\\
After comparing it with the second equation of the problem, sin2x=ab7\sin 2x = a - b\sqrt 7 , we get,
a=22;b=8a = 22;b = 8.
ab+14=228+14=28a - b + 14 = 22 - 8 + 14 = 28 which is a multiple of 7. Thus option D is correct.

Note: Be careful with the algebra while performing simplification of the trigonometric equations. Often there are chances of making mistakes with multiples and sign changes. Pairing of terms in the first question was because most trigonometric identities have two terms involved.