Solveeit Logo

Question

Question: If \(\sin x+\cos x=\sqrt{2}\cos x\), then \(\cos x-\sin x\) is equal to: (a). \(\sqrt{2}\cos x\) ...

If sinx+cosx=2cosx\sin x+\cos x=\sqrt{2}\cos x, then cosxsinx\cos x-\sin x is equal to:
(a). 2cosx\sqrt{2}\cos x
(b). 2sinx\sqrt{2}\sin x
(c). 2(sinx+cosx)\sqrt{2}\left( \sin x+\cos x \right)
(d). None of these

Explanation

Solution

- Hint: First of all write sinx\sin x in terms of cosx\cos x from the given equation sinx+cosx=2cosx\sin x+\cos x=\sqrt{2}\cos x and then substitute the value of sinx\sin x in the given expression cosxsinx\cos x-\sin x and then simplifying this expression in terms of cosx\cos x and then compare the answer with the options given in the question.

Complete step-by-step solution -

The equation given in the question is:
sinx+cosx=2cosx\sin x+\cos x=\sqrt{2}\cos x
Rearranging the above equation and writing sinx\sin x in terms of cosx\cos x we get,
sinx=cosx(21)\sin x=\cos x\left( \sqrt{2}-1 \right)
Now, substituting this value of sinx\sin x in the expression given in the question cosxsinx\cos x-\sin x we getcosxsinx\cos x-\sin x
cosxcosx(21) 2cosx2cosx 2cosx(21) \begin{aligned} & \cos x-\cos x\left( \sqrt{2}-1 \right) \\\ & \Rightarrow 2\cos x-\sqrt{2}\cos x \\\ & \Rightarrow \sqrt{2}\cos x\left( \sqrt{2}-1 \right) \\\ \end{aligned}
Rearranging this expression sinx+cosx=2cosx\sin x+\cos x=\sqrt{2}\cos x we get,
sinx+cosx=2cosx cosx(21)=sinx \begin{aligned} & \sin x+\cos x=\sqrt{2}\cos x \\\ & \Rightarrow \cos x\left( \sqrt{2}-1 \right)=\sin x \\\ \end{aligned}
Now, substituting the above value of cosx(21)\cos x\left( \sqrt{2}-1 \right) in 2cosx(21)\sqrt{2}\cos x\left( \sqrt{2}-1 \right) we get,
2sinx\sqrt{2}\sin x
From the above calculations, we have found that the simplification of this expression cosxsinx\cos x-\sin x is2sinx\sqrt{2}\sin x.
Now, we are going to compare this result with the options given in the question.
2cosx\sqrt{2}\cos x
The value of the above options is not equal to the answer that we have obtained from solving this expression cosxsinx\cos x-\sin x.
2sinx\sqrt{2}\sin x
The value of the above options is equal to the answer that we have obtained from solving this expression cosxsinx\cos x-\sin x.
2(sinx+cosx)\sqrt{2}\left( \sin x+\cos x \right)
Simplifying the above option by substituting the value of sinx+cosx\sin x+\cos x from sinx+cosx=2cosx\sin x+\cos x=\sqrt{2}\cos x in the above expression we get,
2(sinx+cosx) =2(2cosx) =2cosx \begin{aligned} & \sqrt{2}\left( \sin x+\cos x \right) \\\ & =\sqrt{2}\left( \sqrt{2}\cos x \right) \\\ & =2\cos x \\\ \end{aligned}
The solution of the above option is 2cosx2\cos x which is not matching with the result that we have got from solving this expression cosxsinx\cos x-\sin x.
From the above options, we have found that none of the values of option (b) is matched with 2sinx\sqrt{2}\sin x.
Hence, the correct option is (b).

Note: If instead of writing sinx\sin x in terms of cosx\cos x from the given equation sinx+cosx=2cosx\sin x+\cos x=\sqrt{2}\cos x we write cosx\cos x in terms of sinx\sin x from the given equation sinx+cosx=2cosx\sin x+\cos x=\sqrt{2}\cos x then you will get.
sinx+cosx=2cosx cosx(21)=sinx cosx=sinx(21) \begin{aligned} & \sin x+\cos x=\sqrt{2}\cos x \\\ & \Rightarrow \cos x\left( \sqrt{2}-1 \right)=\sin x \\\ & \Rightarrow \cos x=\dfrac{\sin x}{\left( \sqrt{2}-1 \right)} \\\ \end{aligned}
Now, rationalizing the above expression we get,
cosx=sinx21×2+12+1 cosx=(2+1)sinx \begin{aligned} & \cos x=\dfrac{\sin x}{\sqrt{2}-1}\times \dfrac{\sqrt{2}+1}{\sqrt{2}+1} \\\ & \Rightarrow \cos x=\left( \sqrt{2}+1 \right)\sin x \\\ \end{aligned}
Substituting this value of cosx\cos x in cosxsinx\cos x-\sin x we get,
(2+1)sinxsinx =2sinx \begin{aligned} & \left( \sqrt{2}+1 \right)\sin x-\sin x \\\ & =\sqrt{2}\sin x \\\ \end{aligned}
Hence, the correct option is (b).