Solveeit Logo

Question

Question: If sin x + cos x = a, evaluate \({{\sin }^{6}}x+{{\cos }^{6}}x\)....

If sin x + cos x = a, evaluate sin6x+cos6x{{\sin }^{6}}x+{{\cos }^{6}}x.

Explanation

Solution

Hint: For solving this problem, first we convert sin6x+cos6x{{\sin }^{6}}x+{{\cos }^{6}}x in terms of exponent 3 as (sin2x)3+(cos2x)3{{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}} to apply the identity of a3+b3{{a}^{3}}+{{b}^{3}}. Now, we simplify the expression by using the identity a3+b3=(a+b)33ab(a+b){{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) . Again, using the algebraic identity (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab, we further simplify the expression to obtain value in terms of a.
Complete step-by-step answer:
According to the problem statement, we are given sin x + cos x = a and we are required to evaluate sin6x+cos6x{{\sin }^{6}}x+{{\cos }^{6}}x. Considering the evaluation part sin6x+cos6x{{\sin }^{6}}x+{{\cos }^{6}}x and converting it to exponent 3 as (sin2x)3+(cos2x)3{{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}, we get
sin6x+cos6x=(sin2x)3+(cos2x)3\Rightarrow {{\sin }^{6}}x+{{\cos }^{6}}x={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}
By using the algebraic identity, we know that a3+b3=(a+b)33ab(a+b){{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right).
Simplifying the evaluation part by using the above formula and putting a=sin2x and b=cos2xa={{\sin }^{2}}x\text{ and }b\text{=}{{\cos }^{2}}x, we get
(sin2x)3+(cos2x)3=(sin2x+cos2x)33(sin2x)(cos2x)(sin2x+cos2x)\Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3\left( {{\sin }^{2}}x \right)\left( {{\cos }^{2}}x \right)\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)
One of the important trigonometric identities used is sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
(1)33(sin2x)(cos2x)(1) 13(sin2x)(cos2x) 13(sinxcosx)2(1) \begin{aligned} & \Rightarrow {{\left( 1 \right)}^{3}}-3\left( {{\sin }^{2}}x \right)\left( {{\cos }^{2}}x \right)\left( 1 \right) \\\ & \Rightarrow 1-3\left( {{\sin }^{2}}x \right)\left( {{\cos }^{2}}x \right) \\\ & \Rightarrow 1-3{{\left( \sin x\cdot \cos x \right)}^{2}}\ldots \left( 1 \right) \\\ \end{aligned}
To further simplify the expression, use the algebraic identity with some manipulation as:

& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\\ & 2ab={{\left( a+b \right)}^{2}}-\left( {{a}^{2}}+{{b}^{2}} \right) \\\ & ab=\dfrac{{{\left( a+b \right)}^{2}}-\left( {{a}^{2}}+{{b}^{2}} \right)}{2} \\\ \end{aligned}$$ Now, operating the above formulation in equation (1) and replacing $a=\sin x\text{ and }b=\cos x$, we get $$\begin{aligned} & \Rightarrow 1-3{{\left[ \dfrac{{{\left( \sin x+\cos x \right)}^{2}}-\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}{2} \right]}^{2}} \\\ & \Rightarrow 1-\dfrac{3}{{{2}^{2}}}{{\left[ {{\left( \sin x+\cos x \right)}^{2}}-{{\left( 1 \right)}^{2}} \right]}^{2}} \\\ & \Rightarrow 1-\dfrac{3}{4}{{\left[ {{\left( \sin x+\cos x \right)}^{2}}-1 \right]}^{2}} \\\ \end{aligned}$$ At last, substitute sin x + cos x = a, we get $$\begin{aligned} & \Rightarrow 1-\dfrac{3}{4}{{\left[ {{\left( a \right)}^{2}}-1 \right]}^{2}} \\\ & \Rightarrow 1-\dfrac{3}{4}{{\left[ {{a}^{2}}-1 \right]}^{2}} \\\ \end{aligned}$$ Now, by using the identity ${{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy$, we get $$\begin{aligned} & \Rightarrow 1-\dfrac{3}{4}{{\left[ {{a}^{2}}-1 \right]}^{2}} \\\ & \Rightarrow 1-\dfrac{3}{4}\left[ {{a}^{4}}+1-2{{a}^{2}} \right] \\\ & \Rightarrow 1-\dfrac{3}{4}-\dfrac{3}{4}\left( {{a}^{4}}-2{{a}^{2}} \right) \\\ & \Rightarrow \dfrac{1}{4}-\dfrac{3{{a}^{2}}}{4}\left( {{a}^{2}}-2 \right) \\\ \end{aligned}$$ So, the obtained answer is $$\dfrac{1}{4}-\dfrac{3{{a}^{2}}}{4}\left( {{a}^{2}}-2 \right)$$. Note: Students must have the knowledge of algebraic expansions for solving this problem. Substitution of different values must be done in a way to simplify the expression. Students must memorise these steps to minimise errors and save time.