Question
Question: If \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \] and \[\cos \theta + \cos 2\theta + \...
If sinθ+sin2θ+sin3θ=sinα and cosθ+cos2θ+cos3θ=cosα, then θ is equal to
A.2α
B.α
C.2α
D. 6α
Solution
These types of questions are easy to solve if the correct trigonometric formula is used. Start solving the question by dividing the two equations. Use Trigonometric formula i.e. sinC+sinD=2sin(2C+D)cos(2C−D) and cosA+cosB=2cos(2A+B)cos(2A−B).
The cosine function is even; therefore,
cos(−q) = cos(q)
Complete answer:
Consider the equations,
⇒ sinθ+sin2θ+sin3θ=sinα……(1)
⇒ cosθ+cos2θ+cos3θ=cosα……(2)
Divide each side of the equation (1) by the equation (2).
⇒ cosθ+cos2θ+cos3θsinθ+sin2θ+sin3θ=cosαsinα
Apply the trigonometric formula, cosθsinθ=tanθ. Here, θ=α .
⇒ cosθ+cos2θ+cos3θsinθ+sin2θ+sin3θ=tanα
Combine the terms whose sum is the even number so we can use the formulas,
⇒ (cosθ+cos3θ)+cos2θ(sinθ+sin3θ)+sin2θ=tanα
Apply the trigonometric formula ; sinA+sinB=2sin(2A+B)cos(2A−B) and cosA+cosB=2cos(2A+B)cos(2A−B)
Here, A=θ and B=3θ. Substitute values of Aand B into the formula.
⇒ 2cos(2θ+3θ)cos(2θ−3θ)+cos2θ2sin(2θ+3θ)cos(2θ−3θ)+sin2θ=tanα
⇒ 2cos(2θ)cos(−θ)+cos2θ2sin(2θ)cos(−θ)+sin2θ=tanα
Since cosine is an even function \therefore $$$\cos \left( { - \theta } \right) = \cos \theta $$.
$$ \Rightarrow \dfrac{{2\sin \left( {2\theta } \right)\cos \left( \theta \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( \theta \right) + \cos 2\theta }} = \tan \alpha $$
$$ \Rightarrow \dfrac{{\sin 2\theta (2\cos \left( \theta \right) + 1)}}{{\cos 2\theta (2\cos \left( \theta \right) + 1)}} = \tan \alpha $$
Cancel the common terms,
$$ \Rightarrow \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \tan \alpha $$
Apply the trigonometric formula, $$\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $$. Here, angle is 2\theta .
$$ \Rightarrow \tan 2\theta = \tan \alpha $$
Comparing the angles we get,
$$ \Rightarrow $$2\theta = \alpha
$$ \Rightarrow $$\theta = \dfrac{\alpha }{2}$
Correct Answer: A.2α
Note:
The most important thing is to solve the question by remembering the trigonometric formula. The cosine function is the even functioncos(−θ)=cosθ.
Always apply the correct trigonometric formula and think about the conversion from sine function to cosine function and vice versa i.e. cos(90∘−θ)=sinθ. Use the trigonometric formulas according to the question. Here are some useful formulas and identities are given below.
⇒ sin2θ+cos2θ=1
⇒ tan2θ+1=sec2θ
⇒ 1+cot2θ=csc2θ
⇒ sinA+sinB=2sin(2A+B)cos(2A−B)
⇒ sinA−sinB=2cos(2A+B)sin(2A−B)
⇒cosA−cosB=2sin(2A+B)sin(2A−B)