Solveeit Logo

Question

Question: If \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \] and \[\cos \theta + \cos 2\theta + \...

If sinθ+sin2θ+sin3θ=sinα\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha and cosθ+cos2θ+cos3θ=cosα\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha , then θ\theta is equal to
A.α2\dfrac{\alpha }{2}
B.α\alpha
C.2α2\alpha
D. α6\dfrac{\alpha }{6}

Explanation

Solution

These types of questions are easy to solve if the correct trigonometric formula is used. Start solving the question by dividing the two equations. Use Trigonometric formula i.e. sinC+sinD=2sin(C+D2)cos(CD2)\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) and cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right).
The cosine function is even; therefore,
cos(q) = cos(q)\cos \left( { - q} \right){\text{ }} = {\text{ cos}}\left( q \right)

Complete answer:
Consider the equations,
\Rightarrow sinθ+sin2θ+sin3θ=sinα(1)\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \ldots \ldots (1)
\Rightarrow cosθ+cos2θ+cos3θ=cosα(2)\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \ldots \ldots (2)
Divide each side of the equation (1)(1) by the equation (2)(2).
\Rightarrow sinθ+sin2θ+sin3θcosθ+cos2θ+cos3θ=sinαcosα\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}
Apply the trigonometric formula, sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta . Here, θ=α\theta = \alpha .
\Rightarrow sinθ+sin2θ+sin3θcosθ+cos2θ+cos3θ=tanα\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \tan \alpha
Combine the terms whose sum is the even number so we can use the formulas,
\Rightarrow (sinθ+sin3θ)+sin2θ(cosθ+cos3θ)+cos2θ=tanα\dfrac{{(\sin \theta + \sin 3\theta ) + \sin 2\theta }}{{(\cos \theta + \cos 3\theta ) + \cos 2\theta }} = \tan \alpha
Apply the trigonometric formula ; sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) and cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
Here, A=θA = \theta and B=3θB = 3\theta . Substitute values of AAand BB into the formula.
\Rightarrow 2sin(θ+3θ2)cos(θ3θ2)+sin2θ2cos(θ+3θ2)cos(θ3θ2)+cos2θ=tanα\dfrac{{2\sin \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \sin 2\theta }}{{2\cos \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \cos 2\theta }} = \tan \alpha
\Rightarrow 2sin(2θ)cos(θ)+sin2θ2cos(2θ)cos(θ)+cos2θ=tanα\dfrac{{2\sin \left( {2\theta } \right)\cos \left( { - \theta } \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( { - \theta } \right) + \cos 2\theta }} = \tan \alpha
Since cosine is an even function \therefore $$$\cos \left( { - \theta } \right) = \cos \theta $$. $$ \Rightarrow \dfrac{{2\sin \left( {2\theta } \right)\cos \left( \theta \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( \theta \right) + \cos 2\theta }} = \tan \alpha $$ $$ \Rightarrow \dfrac{{\sin 2\theta (2\cos \left( \theta \right) + 1)}}{{\cos 2\theta (2\cos \left( \theta \right) + 1)}} = \tan \alpha $$ Cancel the common terms, $$ \Rightarrow \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \tan \alpha $$ Apply the trigonometric formula, $$\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $$. Here, angle is 2\theta . $$ \Rightarrow \tan 2\theta = \tan \alpha $$ Comparing the angles we get, $$ \Rightarrow $$2\theta = \alpha $$ \Rightarrow $$\theta = \dfrac{\alpha }{2}$

Correct Answer: A.α2\dfrac{\alpha }{2}

Note:
The most important thing is to solve the question by remembering the trigonometric formula. The cosine function is the even functioncos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta .
Always apply the correct trigonometric formula and think about the conversion from sine function to cosine function and vice versa i.e. cos(90θ)=sinθ\cos ({90^ \circ } - \theta ) = \sin \theta . Use the trigonometric formulas according to the question. Here are some useful formulas and identities are given below.
\Rightarrow sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
\Rightarrow tan2θ+1=sec2θ{\tan ^2}\theta + 1 = {\sec ^2}\theta
\Rightarrow 1+cot2θ=csc2θ1 + {\cot ^2}\theta = {\csc ^2}\theta
\Rightarrow sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
\Rightarrow sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
\Rightarrow cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)