Solveeit Logo

Question

Question: If \[\sin \theta +{{\sin }^{2}}\theta =1\], find the value of \[{{\cos }^{12}}\theta +3{{\cos }^{...

If sinθ+sin2θ=1\sin \theta +{{\sin }^{2}}\theta =1, find the value of
cos12θ+3cos10θ+3cos8θ+cos6θ+2cos4θ+2cos2θ2{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2

Explanation

Solution

Hint: First of all, use the formula sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 in the given equation to get sinθ=cos2θ\sin \theta ={{\cos }^{2}}\theta . Now use (a+b)3=a3+b3+3ab(a+b){{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) in the given expression to express it in terms of (sinθ+sin2θ)\left( \sin \theta +{{\sin }^{2}}\theta \right) whose value is 1.

Complete step-by-step answer:
Here, we are given that sinθ+sin2θ=1\sin \theta +{{\sin }^{2}}\theta =1 and we have to find the value of cos12θ+3cos10θ+3cos8θ+cos6θ+2cos4θ+2cos2θ2{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2
First of all let us take the given equation, that is, sinθ+sin2θ=1\sin \theta +{{\sin }^{2}}\theta =1
We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
Or, sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta
By putting the value of sin2θ{{\sin }^{2}}\theta in the given equation, we get,
sinθ+1cos2θ=1\sin \theta +1-{{\cos }^{2}}\theta =1
By cancelling 1 from both sides, we get,
sinθcos2θ=0\sin \theta -{{\cos }^{2}}\theta =0
Or, sinθ=cos2θ....(i)\sin \theta ={{\cos }^{2}}\theta ....\left( i \right)
Now, let us consider the expression whose value is to be found as,
A=cos12θ+3cos10θ+3cos8θ+cos6θ+2cos4θ+2cos2θ2A={{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2
We can also write the above expression as,
A=(cos4θ)3+3cos6θ(cos4θ+cos2θ)+(cos2θ)3+2(cos4θcos2θ1)A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{6}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)
Now by writing, cos6θ=cos2θ.cos4θ{{\cos }^{6}}\theta ={{\cos }^{2}}\theta .{{\cos }^{4}}\theta , we get
A=(cos4θ)3+3cos2θ.cos4θ(cos4θ+cos2θ)+(cos2θ)3+2(cos4θcos2θ1)A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{2}}\theta .{{\cos }^{4}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)
Now, we know that a3+3ab(a+b)+b3=(a+b)3{{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}={{\left( a+b \right)}^{3}}
By taking a=cos4θa={{\cos }^{4}}\theta and b=cos2θb={{\cos }^{2}}\theta in the above expression, we get,
A=(cos4θ+cos2θ)3+2(cos4θ+cos2θ1)A={{\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta -1 \right)
By writing cos4θ=(cos2θ)2{{\cos }^{4}}\theta ={{\left( {{\cos }^{2}}\theta \right)}^{2}} in the above expression, we get,
A=[(cos2θ)2+(cos2θ)]3+2[(cos2θ)2+cos2θ1]A={{\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+\left( {{\cos }^{2}}\theta \right) \right]}^{3}}+2\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+{{\cos }^{2}}\theta -1 \right]
From equation (i), we know that cos2θ=sinθ{{\cos }^{2}}\theta =\sin \theta . By applying it in the above expression, we get
A=[(sinθ)2+sinθ]3+2((sinθ)2+sinθ1)A={{\left[ {{\left( \sin \theta \right)}^{2}}+\sin \theta \right]}^{3}}+2\left( {{\left( \sin \theta \right)}^{2}}+\sin \theta -1 \right)
As we are given that sinθ+sin2θ=1\sin \theta +{{\sin }^{2}}\theta =1, therefore by applying it in the above equation, we get,

& A={{\left[ 1 \right]}^{3}}+2\left[ 1-1 \right] \\\ & A=1+2\left( 0 \right) \\\ & A=1 \\\ \end{aligned}$$ Therefore, we get the value of $${{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2=1$$. Note: Take special care of powers of each term while writing them and always cross-check after writing each equation. Whenever you get the higher powers, always try using the formulas like $${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$$or $${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$$ according to the question. Here, while solving the given equation, some students finally write it as $$\sin \theta =\cos \theta $$ or $${{\sin }^{2}}\theta ={{\cos }^{2}}\theta $$ instead of $$\sin \theta ={{\cos }^{2}}\theta $$. So this mistake must be avoided.