Solveeit Logo

Question

Question: If \(\sin \theta +\operatorname{cosec}\theta =2\), then find the value of \({{\sin }^{2}}\theta +{{\...

If sinθ+cosecθ=2\sin \theta +\operatorname{cosec}\theta =2, then find the value of sin2θ+cosec2θ{{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ?

Explanation

Solution

We start solving the problem by squaring the both sides of the given trigonometric equation sinθ+cosecθ=2\sin \theta +\operatorname{cosec}\theta =2. We then use expand (sinθ+cosecθ)2{{\left( \sin \theta +\operatorname{cosec}\theta \right)}^{2}} using the fact that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. We then use the property of trigonometric functions that sinθ×cosecθ=1\sin \theta \times \operatorname{cosec}\theta =1 and make the necessary calculations to get the required value of sin2θ+cosec2θ{{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .

Complete step by step answer:
According to the problem, we are given that the sum of the trigonometric functions as sinθ+cosecθ=2\sin \theta +\operatorname{cosec}\theta =2 and we need to find the value of sin2θ+cosec2θ{{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .
Now, we have sinθ+cosecθ=2\sin \theta +\operatorname{cosec}\theta =2 ---(1).
Let us do squaring on both sides in equation (1).
(sinθ+cosecθ)2=22\Rightarrow {{\left( \sin \theta +\operatorname{cosec}\theta \right)}^{2}}={{2}^{2}} ---(2).
We know that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. We use this result in equation (2)
sin2θ+cosec2θ+2(sinθ)(cosecθ)=4\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2\left( \sin \theta \right)\left( \operatorname{cosec}\theta \right)=4 ---(3).
We know that sinθ×cosecθ=1\sin \theta \times \operatorname{cosec}\theta =1. We use this result in equation (3).
sin2θ+cosec2θ+2×1=4\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2\times 1=4.
sin2θ+cosec2θ+2=4\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2=4.
sin2θ+cosec2θ=2\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2.

∴ We have found the value of sin2θ+cosec2θ{{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta as 2.

Note: We can also solve this problem as shown below:
We have sinθ+cosecθ=2\sin \theta +\operatorname{cosec}\theta =2 ---(4).
We know that cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }. We use this result in equation (4).
sinθ+1sinθ=2\Rightarrow \sin \theta +\dfrac{1}{\sin \theta }=2.
sin2θ+1sinθ=2\Rightarrow \dfrac{{{\sin }^{2}}\theta +1}{\sin \theta }=2.
sin2θ+1=2sinθ\Rightarrow {{\sin }^{2}}\theta +1=2\sin \theta .
sin2θ2sinθ+1=0\Rightarrow {{\sin }^{2}}\theta -2\sin \theta +1=0.
(sinθ1)2=0\Rightarrow {{\left( \sin \theta -1 \right)}^{2}}=0.
sinθ1=0\Rightarrow \sin \theta -1=0.
sinθ=1\Rightarrow \sin \theta =1.
Let us now find the value of cosecθ\operatorname{cosec}\theta .
So, we have cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.
cosecθ=11=1\Rightarrow \operatorname{cosec}\theta =\dfrac{1}{1}=1.
Now, let us find the value of sin2θ+cosec2θ{{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .
So, we have sin2θ+cosec2θ=12+12{{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{1}^{2}}+{{1}^{2}}.
sin2θ+cosec2θ=1+1\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =1+1.
sin2θ+cosec2θ=2\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2.
We can also solve this problem by performing trial and error method for the angle θ\theta in the sinθ+cosecθ=2\sin \theta +\operatorname{cosec}\theta =2. Similarly, we can expect problems to find the value of sinnθ+cosecnθ{{\sin }^{n}}\theta +{{\operatorname{cosec}}^{n}}\theta using the obtained value of sinθ\sin \theta and cosecθ\operatorname{cosec}\theta .