Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sin θ=2t1+t2\theta = \frac{2t}{1+t^{2}} and ?? lies in the second quadrant, then cosθcos\,\theta is equal to

A

1t21+t2\frac{1-t^{2}}{1+t^{2}}

B

t211+t2\frac{t^{2}-1}{1+t^{2}}

C

1t21+t2\frac{-\left|1-t^{2}\right|}{1+t^{2}}

D

1+t21t2\frac{1+t^{2}}{\left|1-t^{2}\right|}

Answer

1t21+t2\frac{-\left|1-t^{2}\right|}{1+t^{2}}

Explanation

Solution

Given, sinθ=2t1+t2\sin \theta=\frac{2 t}{1+t^{2}}
Since, cosθ\cos \theta lies in the second quadrant.
cosθ<0\therefore \cos \theta < 0
cosθ=1sin2θ\Rightarrow \cos \theta =-\sqrt{1-\sin ^{2} \theta}
=14t2(1+t2)2=-\sqrt{1-\frac{4 t^{2}}{\left(1+t^{2}\right)^{2}}}
=(1t2)2(1+t2)2=-\sqrt{\frac{\left(1-t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}}}
=1t21+t2=-\frac{\left|1-t^{2}\right|}{1+t^{2}}