Solveeit Logo

Question

Mathematics Question on Trigonometry

If sinθ=13\sin \theta = \frac{1}{3}, then secθ\sec \theta is equal to:

A

223\frac{2\sqrt{2}}{3}

B

322\frac{3}{2\sqrt{2}}

C

33

D

13\frac{1}{\sqrt{3}}

Answer

322\frac{3}{2\sqrt{2}}

Explanation

Solution

We are given sinθ=13\sin \theta = \frac{1}{3}. We need to find secθ\sec \theta.

Recall the following trigonometric identities: secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}

sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

From sinθ=13\sin \theta = \frac{1}{3}, we can find cosθ\cos \theta using the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1:

(13)2+cos2θ=1    19+cos2θ=1\left(\frac{1}{3}\right)^2 + \cos^2 \theta = 1 \implies \frac{1}{9} + \cos^2 \theta = 1

cos2θ=119=89\cos^2 \theta = 1 - \frac{1}{9} = \frac{8}{9}

Thus:

cosθ=83\cos \theta = \frac{\sqrt{8}}{3}

Now, we can find secθ\sec \theta:

secθ=1cosθ=183=38=322\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{\sqrt{8}}{3}} = \frac{3}{\sqrt{8}} = \frac{3}{2\sqrt{2}}

Thus, the correct answer is:

b) 322b)\ \frac{3}{2\sqrt{2}}