Solveeit Logo

Question

Question: If \(\sin \theta = \dfrac{{\sqrt 3 }}{2}\), find the values of all T-ratios of \(\theta \)....

If sinθ=32\sin \theta = \dfrac{{\sqrt 3 }}{2}, find the values of all T-ratios of θ\theta .

Explanation

Solution

In this question, we are given the value of sinθ\sin \theta and we are asked to find all other trigonometric ratios. We have to find all the trigonometric ratios, step by step. We know the identity, sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1. Using this relation cosθ\cos \theta can be obtained. Now, we have the value of sinθ\sin \theta and cosθ\cos \theta . By these values, tanθ\tan \theta can be calculated. Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.

Complete step-by-step solution:
Now, according to the question, it is given that
sinθ=32\sin \theta = \dfrac{{\sqrt 3 }}{2}....................….. (1)
As we know the identity,
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
Taking sin2θ{\sin ^2}\theta to the right side, we get
cos2θ=1sin2θ\Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta
Now, cosθ\cos \theta can be expressed in terms of sinθ\sin \theta .
Taking square root on both sides, we get,
cosθ=1sin2θ\Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta }
Substitute the value of sinθ\sin \theta from the equation (1),
cosθ=1(32)2\Rightarrow \cos \theta = \sqrt {1 - {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}
Square the term inside the square root,
cosθ=134\Rightarrow \cos \theta = \sqrt {1 - \dfrac{3}{4}}
Take LCM inside the square root,
cosθ=434\Rightarrow \cos \theta = \sqrt {\dfrac{{4 - 3}}{4}}
Subtract the values in the numerator,
cosθ=14\Rightarrow \cos \theta = \sqrt {\dfrac{1}{4}}
Simplify the term,
cosθ=12\Rightarrow \cos \theta = \dfrac{1}{2}......................….. (2)
As we know,
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
Substitute the values from equation (1) and (2),
tanθ=3212\Rightarrow \tan \theta = \dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}
Cancel out the common factors,
tanθ=3\Rightarrow \tan \theta = \sqrt 3....................….. (3)
We have to find other remaining trigonometric ratios that are cosecθ,secθ\operatorname{cosec} \theta ,\sec \theta and cotθ\cot \theta .
As we know,
cosecθ=1sinθ\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}
Substitute the value from equation (1),
cosecθ=132\Rightarrow \operatorname{cosec} \theta = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}
Simplify the term,
cosecθ=23\Rightarrow \operatorname{cosec} \theta = \dfrac{2}{{\sqrt 3 }}
As we know,
secθ=1cosθsec\theta = \dfrac{1}{{\cos \theta }}
Substitute the value from equation (2),
secθ=112\Rightarrow sec\theta = \dfrac{1}{{\dfrac{1}{2}}}
Simplify the term,
secθ=2\Rightarrow \sec \theta = 2
As we know,
cotθ=1tanθ\cot \theta = \dfrac{1}{{\tan \theta }}
Substitute the value from equation (3),
cotθ=13\Rightarrow \cot \theta = \dfrac{1}{{\sqrt 3 }}

Note: This question can also be solved by using the Pythagoras theorem.
We have,
sinθ=32\Rightarrow \sin \theta = \dfrac{{\sqrt 3 }}{2}.................….. (1)
As we know,
sinθ=heighthypotenuse\sin \theta = \dfrac{{{\text{height}}}}{{{\text{hypotenuse}}}}
So, the value of height and hypotenuse is,
\Rightarrow Height =3= \sqrt 3
\Rightarrow Hypotenuse =2 = 2
Using Pythagoras theorem, we can find the base.
base=(hypotenuse)2(height)2\Rightarrow {\text{base}} = \sqrt {{{\left( {{\text{hypotenuse}}} \right)}^2} - {{\left( {{\text{height}}} \right)}^2}}
Substitute the values,
\Rightarrow base =22(3)2= \sqrt {{2^2} - {{\left( {\sqrt 3 } \right)}^2}}
Square the terms,
\Rightarrow base =43= \sqrt {4 - 3}
Subtract the values,
\Rightarrow base =1= \sqrt 1
Simplify the terms,
\Rightarrow base =1 = 1
As we know,
cosθ=basehypotenuse\cos \theta = \dfrac{{{\text{base}}}}{{{\text{hypotenuse}}}}
Substitute the values,
cosθ=12\Rightarrow \cos \theta = \dfrac{1}{2}....................….. (2)
As we know,
tanθ=heightbase\tan \theta = \dfrac{{{\text{height}}}}{{{\text{base}}}}
Substitute the values,
tanθ=31\Rightarrow \tan \theta = \dfrac{{\sqrt 3 }}{1}
Simplify the terms,
tanθ=3\Rightarrow \tan \theta = \sqrt 3..............….. (3)
We have to find other remaining trigonometric ratios that are cosecθ,secθ\operatorname{cosec} \theta ,\sec \theta and cotθ\cot \theta .
As we know,
cosecθ=1sinθ\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}
Substitute the value from equation (1),
cosecθ=132\Rightarrow \operatorname{cosec} \theta = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}
Simplify the term,
cosecθ=23\Rightarrow \operatorname{cosec} \theta = \dfrac{2}{{\sqrt 3 }}
As we know,
secθ=1cosθsec\theta = \dfrac{1}{{\cos \theta }}
Substitute the value from equation (2),
secθ=112\Rightarrow sec\theta = \dfrac{1}{{\dfrac{1}{2}}}
Simplify the term,
secθ=2\Rightarrow \sec \theta = 2
As we know,
cotθ=1tanθ\cot \theta = \dfrac{1}{{\tan \theta }}
Substitute the value from equation (3),
cotθ=13\Rightarrow \cot \theta = \dfrac{1}{{\sqrt 3 }}