Question
Question: If \[\sin \theta = \dfrac{{\sqrt 3 }}{2}\]and\[\cos \phi = \dfrac{1}{{\sqrt 2 }}\] Find the value of...
If sinθ=23andcosϕ=21 Find the value of 1+tanθtanϕtanθ−tanϕ
Solution
Here we use the table which gives us the value of trigonometric functions at different angles.
With the help of the table we find the values of θ and ϕ. Substitute the values of obtained angles in the numerator and denominator and write the values of trigonometric functions using the table.
- Table for trigonometric functions like sine, cosine and tan at angles 0∘,30∘,45∘,60∘,90∘ is
ANGLEFUNCTION | 0∘ | 30∘ | 45∘ | 60∘ | 90∘ |
---|---|---|---|---|---|
Sin | 0 | 21 | 21 | 23 | 1 |
Cos | 1 | 23 | 21 | 21 | 0 |
Tan | 0 | 31 | 1 | 3 | Not defined |
Complete step-by-step answer:
We are given that sinθ=23
So, here the angle is θ
We know that the value of sine function is 23when the angle is 60∘
Therefore, we can write value of 23=sin60∘
⇒sinθ=sin60∘
We know the value of trigonometric function will be equal if the angles will be of equal measure
⇒θ=60∘ … (1)
Also,cosϕ=21
So, here the angle is ϕ
We know that the value of cosine function is 21when the angle is 45∘
Therefore, we can write value of 21=cos45∘
⇒cosϕ=cos45∘
We know the value of trigonometric function will be equal if the angles will be of equal measure
⇒ϕ=45∘ … (2)
Now we have to find the value of 1+tanθtanϕtanθ−tanϕ
Substitute the values of angle θfrom equation (1) and angle ϕfrom equation (2) in numerator and denominator of 1+tanθtanϕtanθ−tanϕ
⇒1+tanθtanϕtanθ−tanϕ=1+tan60∘tan45∘tan60∘−tan45∘ … (3)
Now we find the values of tan60∘andtan45∘from the table.
tan60∘=3andtan45∘=1
Substitute the values in numerator and denominator of equation (3)
⇒1+tanθtanϕtanθ−tanϕ=1+3×13−1
⇒1+tanθtanϕtanθ−tanϕ=3+13−1
Rationalize the term in RHS by multiplying both numerator and denominator by 3−1
⇒1+tanθtanϕtanθ−tanϕ=3+13−1×3−13−1
Multiply the numerator with numerator and denominator with denominator
⇒1+tanθtanϕtanθ−tanϕ=(3+1)(3−1)(3−1)(3−1)
⇒1+tanθtanϕtanθ−tanϕ=(3+1)(3−1)(3−1)2
Use the property(a−b)2=a2+b2−2abin numerator and the property (a+b)(a−b)=a2−b2in denominator of RHS
⇒1+tanθtanϕtanθ−tanϕ=(3)2−(1)2((3)2+(1)2−2×(3×1))
⇒1+tanθtanϕtanθ−tanϕ=3−13+1−23
⇒1+tanθtanϕtanθ−tanϕ=24−23
Take 2 common from numerator in RHS of the equation
⇒1+tanθtanϕtanθ−tanϕ=22(2−3)
Cancel the same factors from numerator and denominator.
⇒1+tanθtanϕtanθ−tanϕ=2−3
So, the value of 1+tanθtanϕtanθ−tanϕ is 2−3.
Note: Students might try to use the property of tanA−tanB=1+tanAtanBtanA−tanB to write 1+tanθtanϕtanθ−tanϕ. But then we will have the term equal to tan(θ−ϕ)=tan15∘. Since, we don’t know the value of tan15∘ we avoid this process. Also, many students leave the answer with an irrational number i.e. under root value in the denominator, keep in mind the answer should always be rationalized and in lowest form.