Solveeit Logo

Question

Question: If \[\sin \theta = \dfrac{{\sqrt 3 }}{2}\] and \[\cos \phi = \dfrac{1}{{\sqrt 2 }}\]. Find the value...

If sinθ=32\sin \theta = \dfrac{{\sqrt 3 }}{2} and cosϕ=12\cos \phi = \dfrac{1}{{\sqrt 2 }}. Find the value of tanθtanϕ1+tanθtanϕ\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}.

Explanation

Solution

Here, we will use the value sin60=32\sin 60^\circ = \dfrac{{\sqrt 3 }}{2} in the right side of the equation sinθ=32\sin \theta = \dfrac{{\sqrt 3 }}{2} and the value cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }} in the right side of the equation cosϕ=12\cos\phi = \dfrac{1}{{\sqrt 2 }} to find the value of θ\theta and ϕ\phi . Then we will substitute these values in the equation, tanθtanϕ1+tanθtanϕ\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} and then simplify to find the required value.

Complete step by step answer:

We are given that
sinθ=32 ......eq.(1)\sin \theta = \dfrac{{\sqrt 3 }}{2}{\text{ ......eq.(1)}}
cosϕ=12 .......eq.(2)\cos \phi = \dfrac{1}{{\sqrt 2 }}{\text{ .......eq.(2)}}.
Using the value sin60=32\sin 60^\circ = \dfrac{{\sqrt 3 }}{2} in the right side of the equation (1), we get
sinθ=sin60\Rightarrow \sin \theta = \sin 60^\circ
Applying the sin1{\sin ^{ - 1}} in the above equation, we get
sin1sinθ=sin1sin60\Rightarrow {\sin ^{ - 1}}\sin \theta = {\sin ^{ - 1}}\sin 60^\circ
Using the trigonometric property, sin1sina=a{\sin ^{ - 1}}\sin a = a in the above equation, we get
θ=60\Rightarrow \theta = 60^\circ
Using the value cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }} in the right side of the equation (2), we get
cosϕ=cos45\Rightarrow \cos \phi = \cos 45^\circ
Applying the cos1{\cos ^{ - 1}} in the above equation, we get
cos1cosϕ=cos1cos45\Rightarrow {\cos ^{ - 1}}\cos \phi = {\cos ^{ - 1}}\cos 45^\circ
Using the trigonometric property, cos1cosa=a{\cos ^{ - 1}}\cos a = a in the above equation, we get
ϕ=45\Rightarrow \phi = 45^\circ
Substituting the value of θ\theta and ϕ\phi in the equation, tanθtanϕ1+tanθtanϕ\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}, we get
tan60tan451+tan60tan45\Rightarrow \dfrac{{\tan 60^\circ - \tan 45^\circ }}{{1 + \tan 60^\circ \cdot \tan 45^\circ }}
Using the trigonometric value, tan60=3\tan 60^\circ = \sqrt 3 and tan45=1\tan 45^\circ = 1 in the above equation and then simplify, we get

311+31 311+3 313+1  \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \cdot 1}} \\\ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \\\ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\\

Multiplying the numerator and denominator by 31\sqrt 3 - 1 in the above equation, we get

313+13131 (31)(31)(3+1)(31) (31)2(3+1)(31)  \Rightarrow \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \cdot \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\\ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt {3 - 1} } \right)}} \\\ \Rightarrow \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt {3 - 1} } \right)}} \\\

Using the value, (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} in numerator and (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} in denominator in the above equation, we get

(3)2212+12(3)212 322+131 4222 22  \Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} - 2 \cdot 1 \cdot \sqrt 2 + {1^2}}}{{{{\left( {\sqrt 3 } \right)}^2} - {1^2}}} \\\ \Rightarrow \dfrac{{3 - 2\sqrt 2 + 1}}{{3 - 1}} \\\ \Rightarrow \dfrac{{4 - 2\sqrt 2 }}{2} \\\ \Rightarrow 2 - \sqrt 2 \\\

Thus, the required value is 222 - \sqrt 2 .

Note: In solving these types of questions, the key concept is to have a good understanding of the basic trigonometric values and learn how to use the values from trigonometric tables. Students should have a grasp of trigonometric values, for simplifying the given equation. Remember that sin60=32\sin 60^\circ = \dfrac{{\sqrt 3 }}{2} and cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}.