Solveeit Logo

Question

Question: If \(\sin \theta =\dfrac{8}{17}\), find other trigonometric ratios....

If sinθ=817\sin \theta =\dfrac{8}{17}, find other trigonometric ratios.

Explanation

Solution

Hint:Assume that in the given function: sinθ=817\sin \theta =\dfrac{8}{17}, 8 is the length of perpendicular and 17 is the length of hypotenuse of a right angle triangle. Use Pythagoras theorem given by: hypotenusee2=base2+perpendicularr2\text{hypotenuse}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicular}{{\text{r}}^{\text{2}}}, to determine the length of the base of the right angle triangle. Now, find cosθ\cos \theta by taking the ratio of base and hypotenuse. To find tanθ\tan \theta take the ratio of sinθ\sin \theta and cosθ\cos \theta . Take the reciprocal of sinθ\sin \theta , cosθ\cos \theta and tanθ\tan \theta to find the value of secθ\sec \theta , cosecθ\cos ec\theta and cotθ\cot \theta respectively.

Complete step-by-step answer:
We have been provided with the trigonometric ratio, sinθ=817\sin \theta =\dfrac{8}{17}.
We know that, sinθ=PerpendicularHypotenuse\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}. Therefore, on comparing it with the above provided ratio, we have, 8 as the length of perpendicular and 17 as the length of hypotenuse of a right angle triangle.

Now, using Pythagoras theorem: hypotenuse2=base2+perpendicular2\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}, we get,

& \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}} \\\ & \Rightarrow \text{base}=\sqrt{\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{{{17}^{\text{2}}}-{{8}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{289-64} \\\ & \Rightarrow \text{base}=\sqrt{225} \\\ & \Rightarrow \text{base}=15 \\\ \end{aligned}$$ We know that, $\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}$. $$\Rightarrow \cos \theta =\dfrac{15}{17}$$ Also, $\tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}}$ $\Rightarrow \tan \theta =\dfrac{8}{15}$ Now, take the reciprocal of $\sin \theta $, $\cos \theta $ and $\tan \theta $ to find the value of $\sec \theta $, $\cos ec\theta $ and $\cot \theta $ respectively. $\begin{aligned} & \sec \theta =\dfrac{1}{\cos \theta } \\\ & \Rightarrow \sec \theta =\dfrac{17}{15} \\\ \end{aligned}$ $\begin{aligned} & \cos ec\theta =\dfrac{1}{\sin \theta } \\\ & \Rightarrow \cos ec\theta =\dfrac{17}{8} \\\ \end{aligned}$ $\begin{aligned} & \cot \theta =\dfrac{1}{\tan \theta } \\\ & \Rightarrow \cot \theta =\dfrac{15}{8} \\\ \end{aligned}$ Note: Here, we have used Pythagoras theorem to determine the base of the triangle to find other trigonometric ratios. One may note that, $\sec \theta $ is the ratio of length of hypotenuse and base, $\cos ec\theta $ is the ratio of length of perpendicular and base, and $\cot \theta $ is the ratio of length of base and hypotenuse. So, these ratios can also be found without taking the reciprocals.We can solve the question by using trigonometric identities $\sin^2\theta+\cos^2\theta=1$, $1+\tan^2\theta=\sec^2\theta$ to find all other trigonometric ratios.