Solveeit Logo

Question

Question: If \(\sin \theta =\dfrac{12}{13}\), then the value of \(\dfrac{2\cos \theta +3\tan \theta }{\sin \th...

If sinθ=1213\sin \theta =\dfrac{12}{13}, then the value of 2cosθ+3tanθsinθ+tanθsinθ\dfrac{2\cos \theta +3\tan \theta }{\sin \theta +\tan \theta \sin \theta } is
a. 125\dfrac{12}{5}
b. 513\dfrac{5}{13}
c. 259102\dfrac{259}{102}
d. 25965\dfrac{259}{65}

Explanation

Solution

Hint: In order to solve this question, we should know the relation of trigonometric ratios like, if sinθ=ab\sin \theta =\dfrac{a}{b} then cosθ=b2a2b\cos \theta =\dfrac{\sqrt{{{b}^{2}}-{{a}^{2}}}}{b} and tanθ=ab2a2\tan \theta =\dfrac{a}{\sqrt{{{b}^{2}}-{{a}^{2}}}}. By using these properties, we will be able to find the value of the given expression.

Complete step-by-step answer:

In this question, we have been asked to find the value of 2cosθ+3tanθsinθ+tanθsinθ\dfrac{2\cos \theta +3\tan \theta }{\sin \theta +\tan \theta \sin \theta } when it is given that sinθ=1213\sin \theta =\dfrac{12}{13}.To solve this question, we should know the relation between trigonometric angles like, if sinθ=ab\sin \theta =\dfrac{a}{b} then cosθ=b2a2b\cos \theta =\dfrac{\sqrt{{{b}^{2}}-{{a}^{2}}}}{b} and tanθ=ab2a2\tan \theta =\dfrac{a}{\sqrt{{{b}^{2}}-{{a}^{2}}}}. Now, we have been given that sinθ=1213\sin \theta =\dfrac{12}{13}. So, for a = 12 and b = 13, we can write, cosθ=13212213\cos \theta =\dfrac{\sqrt{{{13}^{2}}-{{12}^{2}}}}{13} and tanθ=12132122\tan \theta =\dfrac{12}{\sqrt{{{13}^{2}}-{{12}^{2}}}}.
And we can further write them as,
cosθ=16914413\cos \theta =\dfrac{\sqrt{169-144}}{13} and tanθ=12169144\tan \theta =\dfrac{12}{\sqrt{169-144}}
cosθ=2513\cos \theta =\dfrac{\sqrt{25}}{13} and tanθ=1225\tan \theta =\dfrac{12}{\sqrt{25}}.
cosθ=513\cos \theta =\dfrac{5}{13} and tanθ=125\tan \theta =\dfrac{12}{5}.
Now, we will put the value of sinθ,cosθ\sin \theta ,\cos \theta and tanθ\tan \theta in the given expression, that is 2cosθ+3tanθsinθ+tanθsinθ\dfrac{2\cos \theta +3\tan \theta }{\sin \theta +\tan \theta \sin \theta }. So, we will get,
2×513+3×1251213+125×1213\dfrac{2\times \dfrac{5}{13}+3\times \dfrac{12}{5}}{\dfrac{12}{13}+\dfrac{12}{5}\times \dfrac{12}{13}}
Now, we will simplify it further, so we get,
1013+3651213+14465\dfrac{\dfrac{10}{13}+\dfrac{36}{5}}{\dfrac{12}{13}+\dfrac{144}{65}}
Now, we will take the LCM of both the terms of the numerator and denominator. So, we will get,

& \dfrac{\dfrac{10\times 5+36\times 13}{13\times 5}}{\dfrac{12\times 5+144}{65}} \\\ & \Rightarrow \dfrac{\dfrac{\left( 50+468 \right)}{65}}{\dfrac{\left( 60+144 \right)}{65}} \\\ \end{aligned}$$ We can further write it as, $\begin{aligned} & \dfrac{518\times 65}{204\times 65} \\\ & \Rightarrow \dfrac{518}{204} \\\ & \Rightarrow \dfrac{259}{102} \\\ \end{aligned}$ Hence, we can say that for, $\sin \theta =\dfrac{12}{13}$, we get the value of $\dfrac{2\cos \theta +3\tan \theta }{\sin \theta +\tan \theta \sin \theta }$ as $\dfrac{259}{102}$. Therefore, option (c) is the correct answer. Note: While solving this question, the possible mistake one can make is a calculation mistake. Also, one can solve this question by using a few trigonometric properties like, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$. By using these we can convert $\cos \theta $ and $\tan \theta $ to $\sin \theta $ and then we will put the values of $\sin \theta $ and then simplify to get the answer.