Solveeit Logo

Question

Question: If \(\sin \theta =\dfrac{1}{4}\), \(\theta \) being in quadrant II, how do you find exact value of \...

If sinθ=14\sin \theta =\dfrac{1}{4}, θ\theta being in quadrant II, how do you find exact value of sin(θπ3)\sin \left( \theta -\dfrac{\pi }{3} \right) ?

Explanation

Solution

We explain the function sinθ=14\sin \theta =\dfrac{1}{4} and the quadrant value for the angle θ\theta . We express the identity functions of other ratio of cos with ratio of sin. It’s given that sinθ=14\sin \theta =\dfrac{1}{4}. Thereafter we put the value to find the value of each of the remaining trigonometric functions. We also use the associative angle formula of sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B.

Complete step by step answer:
It’s given that sinθ=14\sin \theta =\dfrac{1}{4}, θ\theta being in quadrant II. In that quadrant only sinθ\sin \theta and cscθ\csc \theta are positive whereas all the other ratios are negative.
We know the sum of the square law of (sinx)2+(cosx)2=1{{\left( \sin x \right)}^{2}}+{{\left( \cos x \right)}^{2}}=1.
We can put the value of sinθ=14\sin \theta =\dfrac{1}{4} in the equation of (sinx)2+(cosx)2=1{{\left( \sin x \right)}^{2}}+{{\left( \cos x \right)}^{2}}=1.
Putting the value of sinθ\sin \theta , we get (14)2+(cosθ)2=1{{\left( \dfrac{1}{4} \right)}^{2}}+{{\left( \cos \theta \right)}^{2}}=1.
Now we perform the binary operations.
(14)2+(cosθ)2=1 (cosθ)2=1116=1516 (cosθ)=±154 {{\left( \dfrac{1}{4} \right)}^{2}}+{{\left( \cos \theta \right)}^{2}}=1 \\\ \Rightarrow {{\left( \cos \theta \right)}^{2}}=1-\dfrac{1}{16}=\dfrac{15}{16} \\\ \Rightarrow \left( \cos \theta \right)=\pm \dfrac{\sqrt{15}}{4} \\\
The value of cosθ\cos \theta in quadrant II will be negative and that’s why (cosθ)=154\left( \cos \theta \right)=-\dfrac{\sqrt{15}}{4}.
Now we use the identity formula of sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B for sin(θπ3)\sin \left( \theta -\dfrac{\pi }{3} \right).
So, sin(θπ3)=sinθcosπ3cosθsinπ3\sin \left( \theta -\dfrac{\pi }{3} \right)=\sin \theta \cos \dfrac{\pi }{3}-\cos \theta \sin \dfrac{\pi }{3}.
Putting the values, we get,
sin(θπ3)=14×12(154)×32 sin(θπ3)=18+358 sin(θπ3)=1+358\sin \left( \theta -\dfrac{\pi }{3} \right)=\dfrac{1}{4}\times \dfrac{1}{2}-\left( -\dfrac{\sqrt{15}}{4} \right)\times \dfrac{\sqrt{3}}{2}\\\ \Rightarrow\sin \left( \theta -\dfrac{\pi }{3} \right) =\dfrac{1}{8}+\dfrac{3\sqrt{5}}{8}\\\ \therefore\sin \left( \theta -\dfrac{\pi }{3} \right) =\dfrac{1+3\sqrt{5}}{8}

Therefore, the exact value of sin(θπ3)\sin \left( \theta -\dfrac{\pi }{3} \right) is 1+358\dfrac{1+3\sqrt{5}}{8}.

Note: In addition to the reciprocal relationships of certain trigonometric functions, two other types of relationships exist. These relationships, known as trigonometric identities, include functional relationships and Pythagorean relationships.