Solveeit Logo

Question

Question: If \(\sin \theta +\cos \theta =x\) , Prove that \({{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{4...

If sinθ+cosθ=x\sin \theta +\cos \theta =x , Prove that sin6θ+cos6θ=43(x21)24{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{4-3{{\left( {{x}^{2}}-1 \right)}^{2}}}{4}

Explanation

Solution

Hint: In this question,we will use some algebraic formulas such that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}, (a+b)3=a3+b3+3ab(a+b){{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b) and trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.

Complete step-by-step answer:

It is given that, sinθ+cosθ=x\sin \theta +\cos \theta =x
Squaring the given equation, we get
(sinθ+cosθ)2=x2{{\left( \sin \theta +\cos \theta \right)}^{2}}={{x}^{2}}
Appling the formula (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}, we get
sin2θ+2sinθcosθ+cos2θ=x2{{\sin }^{2}}\theta +2\sin \theta \cos \theta +{{\cos }^{2}}\theta ={{x}^{2}}
Rearranging the terms, we get
(sin2θ+cos2θ)+2sinθcosθ=x2\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)+2\sin \theta \cos \theta ={{x}^{2}}
We know that, the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
1+2sinθcosθ=x21+2\sin \theta \cos \theta ={{x}^{2}}
2sinθcosθ=x212\sin \theta \cos \theta ={{x}^{2}}-1
Dividing both sides by 2, we get
sinθcosθ=x212\sin \theta \cos \theta =\dfrac{{{x}^{2}}-1}{2}
Again, squaring on both sides, we get
(sinθcosθ)2=(x212)2{{\left( \sin \theta \cos \theta \right)}^{2}}={{\left( \dfrac{{{x}^{2}}-1}{2} \right)}^{2}}
sin2θcos2θ=(x21)24................(1){{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}................(1)
Let us consider the L. H. S.
sin6θ+cos6θ=(sin2θ)3+(cos2θ)3{{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta \right)}^{3}}+{{\left( {{\cos }^{2}}\theta \right)}^{3}}
Appling the formula (a+b)3=a3+b3+3ab(a+b){{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b) and it is rearranging as followa3+b3=(a+b)33ab(a+b){{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab(a+b), we get
sin6θ+cos6θ=(sin2θ+cos2θ)33sin2θcos2θ(sin2θ+cos2θ).........(2){{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{3}}-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right).........(2)
Now put the value from equation (1) sin2θcos2θ=(x21)24{{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{({{x}^{2}}-1)}^{2}}}{4} in the equation (2) and trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, we get
sin6θ+cos6θ=(1)33(x21)24(1){{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( 1 \right)}^{3}}-3\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}\left( 1 \right)
Rearranging the terms, we get
sin6θ+cos6θ=13(x21)24{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}
Taking the LCM on the right side, we get
sin6θ+cos6θ=43(x21)24{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{4-3{{({{x}^{2}}-1)}^{2}}}{4}
This is the desired result.

Note: We might get confused the algebraic expansion of (a+b)3{{(a+b)}^{3}} and a3b3{{a}^{3}}-{{b}^{3}}. The algebraic expansion of (a+b)3{{(a+b)}^{3}} is a3+3a2b+3ab2+b3{{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} and algebraic expansion of a3b3{{a}^{3}}-{{b}^{3}} is (a+b)33ab(a+b){{\left( a+b \right)}^{3}}-3ab(a+b). Both the algebraic expansions are not equal.