Question
Question: If \(\sin \theta +\cos \theta =x\) , Prove that \({{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{4...
If sinθ+cosθ=x , Prove that sin6θ+cos6θ=44−3(x2−1)2
Solution
Hint: In this question,we will use some algebraic formulas such that (a+b)2=a2+2ab+b2, (a+b)3=a3+b3+3ab(a+b) and trigonometric identity sin2θ+cos2θ=1.
Complete step-by-step answer:
It is given that, sinθ+cosθ=x
Squaring the given equation, we get
(sinθ+cosθ)2=x2
Appling the formula (a+b)2=a2+2ab+b2, we get
sin2θ+2sinθcosθ+cos2θ=x2
Rearranging the terms, we get
(sin2θ+cos2θ)+2sinθcosθ=x2
We know that, the trigonometric identity sin2θ+cos2θ=1
1+2sinθcosθ=x2
2sinθcosθ=x2−1
Dividing both sides by 2, we get
sinθcosθ=2x2−1
Again, squaring on both sides, we get
(sinθcosθ)2=(2x2−1)2
sin2θcos2θ=4(x2−1)2................(1)
Let us consider the L. H. S.
sin6θ+cos6θ=(sin2θ)3+(cos2θ)3
Appling the formula (a+b)3=a3+b3+3ab(a+b) and it is rearranging as followa3+b3=(a+b)3−3ab(a+b), we get
sin6θ+cos6θ=(sin2θ+cos2θ)3−3sin2θcos2θ(sin2θ+cos2θ).........(2)
Now put the value from equation (1) sin2θcos2θ=4(x2−1)2 in the equation (2) and trigonometric identity sin2θ+cos2θ=1, we get
sin6θ+cos6θ=(1)3−34(x2−1)2(1)
Rearranging the terms, we get
sin6θ+cos6θ=1−34(x2−1)2
Taking the LCM on the right side, we get
sin6θ+cos6θ=44−3(x2−1)2
This is the desired result.
Note: We might get confused the algebraic expansion of (a+b)3 and a3−b3. The algebraic expansion of (a+b)3 is a3+3a2b+3ab2+b3 and algebraic expansion of a3−b3 is (a+b)3−3ab(a+b). Both the algebraic expansions are not equal.