Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If sin θ\theta , cos θ\theta , tan θ\theta are in G.P. then cos9θ+cos6θ+3cos5θ1cos^{9} \theta + cos^{6}\theta + 3cos^{5}\theta- 1 is equal to

A

-1

B

0

C

1

D

2

Answer

0

Explanation

Solution

Given : sin θ\theta , cos θ\theta , tan θ\theta are in G.P.
cos2θ=sinθtanθcos3θ=sin2θ\Rightarrow \, \, \, cos^2 \theta \, = \, sin\theta \, tan\theta \, \Rightarrow \, cos^3 \theta \, = \, sin^2\theta
cos3θ=1cos2θ\Rightarrow \, \, cos^3 \theta \, =1-cos^2 \theta
(cos3θ+cos2θ)=1...(1)\Rightarrow \, \, \, (cos^3\theta \, \, + \, cos^2 \theta) \, = 1 \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...(1)
Cubic both sides, we have
cos9θ+cos6θ+3cos5θ.(cos3θ+cos2θ)=1cos^9 \theta + cos^6 \theta + 3 cos^5 \theta . (cos^3 \theta+ cos^2 \theta) =1
cos9θ+cos6θ+3cos5θ=1\Rightarrow \, \, \, cos^9 \theta + cos^6 \theta + 3cos^5 \theta =1
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,[Using equation (1)]
cos9θ+cos6θ+3cos5θ1=0\Rightarrow \, \, \, cos^9 \theta + cos^6 \theta + 3cos^5 \theta - 1=0