Solveeit Logo

Question

Question: If \[\sin \theta + \cos \theta = \sqrt 2 \], then find the value of \[\tan \theta + \cot \theta \]....

If sinθ+cosθ=2\sin \theta + \cos \theta = \sqrt 2 , then find the value of tanθ+cotθ\tan \theta + \cot \theta .

Explanation

Solution

Here we will firstly square both sides of the given equation to get the value of sinθcosθ\sin \theta \cos \theta . Then we will divide the given equation by cosθ\cos \theta to get the equation in terms of tanθ\tan \theta . Then again we will divide the given equation by sinθ\sin \theta to get the equation in terms of cotθ\cot \theta . We will then add these equations with tanθ\tan \theta and cotθ\cot \theta to get the value of tanθ+cotθ\tan \theta + \cot \theta .

Complete step by step solution:
It is given that sinθ+cosθ=2\sin \theta + \cos \theta = \sqrt 2 ………………(1)\left( 1 \right)
Now, we will be squaring both side of the equation (1)\left( 1 \right). Therefore, we get
(sinθ+cosθ)2=(2)2\Rightarrow {\left( {\sin \theta + \cos \theta } \right)^2} = {\left( {\sqrt 2 } \right)^2}
sin2θ+cos2θ+2sinθcosθ=2\Rightarrow {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta = 2
We know from the trigonometric properties that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1. Therefore, we get
1+2sinθcosθ=2\Rightarrow 1 + 2\sin \theta \cos \theta = 2
Subtracting the lie terms, we get
2sinθcosθ=21 2sinθcosθ=1\begin{array}{l} \Rightarrow 2\sin \theta \cos \theta = 2 - 1\\\ \Rightarrow 2\sin \theta \cos \theta = 1\end{array}
Dividing both sides by 2, we get
sinθcosθ=12\Rightarrow \sin \theta \cos \theta = \dfrac{1}{2} ………………(2)\left( 2 \right)
Now we will divide the equation (1)\left( 1 \right) by cosθ\cos \theta . Therefore, we get
sinθ+cosθcosθ=2cosθ\Rightarrow \dfrac{{\sin \theta + \cos \theta }}{{\cos \theta }} = \dfrac{{\sqrt 2 }}{{\cos \theta }}
tanθ+1=2cosθ\Rightarrow \tan \theta + 1 = \dfrac{{\sqrt 2 }}{{\cos \theta }}………………(3)\left( 3 \right)
Now we will divide the equation (1)\left( 1 \right) by sinθ\sin \theta . Therefore, we get
sinθ+cosθsinθ=2sinθ\Rightarrow \dfrac{{\sin \theta + \cos \theta }}{{\sin \theta }} = \dfrac{{\sqrt 2 }}{{\sin \theta }}
1+cotθ=2sinθ\Rightarrow 1 + \cot \theta = \dfrac{{\sqrt 2 }}{{\sin \theta }}………………(4)\left( 4 \right)
Now adding the equation (3)\left( 3 \right) and equation (4)\left( 4 \right), we get
tanθ+1+1+cotθ=2cosθ+2sinθ\Rightarrow \tan \theta + 1 + 1 + \cot \theta = \dfrac{{\sqrt 2 }}{{\cos \theta }} + \dfrac{{\sqrt 2 }}{{\sin \theta }}
Adding the like terms, we get
tanθ+cotθ+2=2cosθ+2sinθ\Rightarrow \tan \theta + \cot \theta + 2 = \dfrac{{\sqrt 2 }}{{\cos \theta }} + \dfrac{{\sqrt 2 }}{{\sin \theta }}
Taking LCM on the right side of the equation, we get
tanθ+cotθ+2=2(sinθ+cosθ)sinθcosθ\Rightarrow \tan \theta + \cot \theta + 2 = \dfrac{{\sqrt 2 \left( {\sin \theta + \cos \theta } \right)}}{{\sin \theta \cos \theta }}
Subtracting 2 from both the sides, we get
tanθ+cotθ=2(sinθ+cosθ)sinθcosθ2\Rightarrow \tan \theta + \cot \theta = \dfrac{{\sqrt 2 \left( {\sin \theta + \cos \theta } \right)}}{{\sin \theta \cos \theta }} - 2
Now by using the equation (1)\left( 1 \right) we will put the value of sinθ+cosθ\sin \theta + \cos \theta in the equation and also by using the equation (2)\left( 2 \right) we will put the value of sinθcosθ\sin \theta \cos \theta in the equation, we get
tanθ+cotθ=2(2)122\Rightarrow \tan \theta + \cot \theta = \dfrac{{\sqrt 2 \left( {\sqrt 2 } \right)}}{{\dfrac{1}{2}}} - 2
Simplifying the expression, we get
tanθ+cotθ=2122 tanθ+cotθ=42 tanθ+cotθ=2\begin{array}{l} \Rightarrow \tan \theta + \cot \theta = \dfrac{2}{{\dfrac{1}{2}}} - 2\\\ \Rightarrow \tan \theta + \cot \theta = 4 - 2\\\ \Rightarrow \tan \theta + \cot \theta = 2\end{array}
Hence, tanθ+cotθ\tan \theta + \cot \theta is equal to 2.

Note: When we add two equations, then the terms on the left side of both the equations are added and terms on the right side of both the equations are added. Here, if we didn’t find the square of the given equation, then we will not be able to find the value of sinθcosθ\sin \theta \cos \theta . Hence we would not be able to solve the question.
We should note that the ratio of the sinθ\sin \theta and cosθ\cos \theta is equal to the tanθ\tan \theta . Also the ratio of cosθ\cos \theta and sinθ\sin \theta is equal to cotθ\cot \theta .
That is tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} andcotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}.