Solveeit Logo

Question

Question: If \(\sin \theta +\cos \theta =\sqrt{2}\cos \theta \), then find the general value of \(\theta \)?...

If sinθ+cosθ=2cosθ\sin \theta +\cos \theta =\sqrt{2}\cos \theta , then find the general value of θ\theta ?

Explanation

Solution

We start solving the problem by dividing both sides of the given trigonometric equation with 2\sqrt{2}. We then make use of the results sinπ4=cosπ4=12\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} and cosAcosB+sinAsinB=cos(AB)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right) to proceed through the problem. We then make use of the fact that if cosθ=cosα\cos \theta =\cos \alpha , then the general solution is θ=2nπ±α\theta =2n\pi \pm \alpha . We then make the necessary calculations to get the required answer.

Complete step by step answer:
According to the problem, we are given that sinθ+cosθ=2cosθ\sin \theta +\cos \theta =\sqrt{2}\cos \theta and we need to find the general value of θ\theta .
Now, we have sinθ+cosθ=2cosθ\sin \theta +\cos \theta =\sqrt{2}\cos \theta ---(1).
Let us divide both sides of equation (1) with 2\sqrt{2}.
sinθ+cosθ2=2cosθ2\Rightarrow \dfrac{\sin \theta +\cos \theta }{\sqrt{2}}=\dfrac{\sqrt{2}\cos \theta }{\sqrt{2}}.
12sinθ+12cosθ=cosθ\Rightarrow \dfrac{1}{\sqrt{2}}\sin \theta +\dfrac{1}{\sqrt{2}}\cos \theta =\cos \theta ---(2).
We know that sinπ4=cosπ4=12\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}. Let us use this in equation (2).
sinπ4sinθ+cosπ4cosθ=cosθ\Rightarrow \sin \dfrac{\pi }{4}\sin \theta +\cos \dfrac{\pi }{4}\cos \theta =\cos \theta .
cosπ4cosθ+sinπ4sinθ=cosθ\Rightarrow \cos \dfrac{\pi }{4}\cos \theta +\sin \dfrac{\pi }{4}\sin \theta =\cos \theta ---(3).
We know that cosAcosB+sinAsinB=cos(AB)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right). Let us use this result in equation (3).
cos(π4θ)=cosθ\Rightarrow \cos \left( \dfrac{\pi }{4}-\theta \right)=\cos \theta ---(4).
We know that if cosθ=cosα\cos \theta =\cos \alpha , then the general solution is defined as θ=2nπ±α\theta =2n\pi \pm \alpha , nZn\in Z.
So, we have θ=2nπ±(π4θ)\theta =2n\pi \pm \left( \dfrac{\pi }{4}-\theta \right).
θ=2nπ+(π4θ)\Rightarrow \theta =2n\pi +\left( \dfrac{\pi }{4}-\theta \right), θ=2nπ(π4θ)\theta =2n\pi -\left( \dfrac{\pi }{4}-\theta \right).
2θ=2nπ+π4\Rightarrow 2\theta =2n\pi +\dfrac{\pi }{4}, θ=2nππ4+θ\theta =2n\pi -\dfrac{\pi }{4}+\theta (which is a contradiction).
θ=nπ+π8\Rightarrow \theta =n\pi +\dfrac{\pi }{8}, nZn\in Z.

\therefore We have found the general solution for the given trigonometric equation sinθ+cosθ=2cosθ\sin \theta +\cos \theta =\sqrt{2}\cos \theta as nπ+π8n\pi +\dfrac{\pi }{8}, nZn\in Z.

Note: We should perform each step carefully in order to avoid confusion and calculation mistakes. We should not confuse between principal and general value while solving the problems involving trigonometric equations. We can also solve this problem as shown below:
We have given sinθ+cosθ=2cosθ\sin \theta +\cos \theta =\sqrt{2}\cos \theta ---(5).
Let us divide both sides of equation (5) with 2\sqrt{2}.
sinθ+cosθ2=2cosθ2\Rightarrow \dfrac{\sin \theta +\cos \theta }{\sqrt{2}}=\dfrac{\sqrt{2}\cos \theta }{\sqrt{2}}.
12sinθ+12cosθ=cosθ\Rightarrow \dfrac{1}{\sqrt{2}}\sin \theta +\dfrac{1}{\sqrt{2}}\cos \theta =\cos \theta ---(6).
We know that sinπ4=cosπ4=12\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}. Let us use this in equation (6).
cosπ4sinθ+sinπ4cosθ=cosθ\Rightarrow \cos \dfrac{\pi }{4}\sin \theta +\sin \dfrac{\pi }{4}\cos \theta =\cos \theta .
sinθcosπ4+cosθsinπ4=cosθ\Rightarrow \sin \theta \cos \dfrac{\pi }{4}+\cos \theta \sin \dfrac{\pi }{4}=\cos \theta ---(7).
We know that sinAcosB+cosAsinB=sin(A+B)\sin A\cos B+\cos A\sin B=\sin \left( A+B \right). Let us use this result in equation (7).
sin(θ+π4)=cosθ\Rightarrow \sin \left( \theta +\dfrac{\pi }{4} \right)=\cos \theta ---(8).
We know that cosθ=sin(π2θ)\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right). Let us use this result in equation (8).
sin(θ+π4)=sin(π2θ)\Rightarrow \sin \left( \theta +\dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{2}-\theta \right).
We know that if sinθ=sinα\sin \theta =\sin \alpha , then the general solution is defined as θ=nπ+(1)nα\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha , nZn\in Z.
θ+π4=nπ+(1)n(π2θ)\Rightarrow \theta +\dfrac{\pi }{4}=n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{\pi }{2}-\theta \right).
Let us assume n is even.
θ+π4=nπ+(π2θ)\Rightarrow \theta +\dfrac{\pi }{4}=n\pi +\left( \dfrac{\pi }{2}-\theta \right).
2θ=nπ+π4\Rightarrow 2\theta =n\pi +\dfrac{\pi }{4}.
θ=nπ2+π8\Rightarrow \theta =\dfrac{n\pi }{2}+\dfrac{\pi }{8}, nZn\in Z.
Let us assume n is odd.
θ+π4=nπ(π2θ)\Rightarrow \theta +\dfrac{\pi }{4}=n\pi -\left( \dfrac{\pi }{2}-\theta \right).
θ+π4=nππ2+θ\Rightarrow \theta +\dfrac{\pi }{4}=n\pi -\dfrac{\pi }{2}+\theta
π4=nππ2\Rightarrow \dfrac{\pi }{4}=n\pi -\dfrac{\pi }{2}, which is a contradiction.