Question
Question: If \(\sin \theta +\cos \theta =m\), then prove that \({{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfr...
If sinθ+cosθ=m, then prove that sin6θ+cos6θ=41(4−3(m2−1)2)
Solution
Hint: Square both sides of the equation (sinθ+cosθ)=m and expand using the algebraic identity (a+b)2=a2+2ab+b2.Use identity sin2θ+cos2θ=1. Hence find the value of sinθcosθ.
Factorise sin6θ+cos6θ using the identity a3+b3=(a+b)(a2−ab+b2). Finally, use a2+b2=(a+b)2−2ab and hence prove that sin6θ+cos6θ=44−3(m2−1)2
Complete step-by-step answer:
We have sinθ+cosθ=m
Squaring both sides of the equation, we get
(sinθ+cosθ)2=m2
We know that (a+b)2=a2+2ab+b2
Using the above algebraic identity, we get
sin2θ+2sinθcosθ+cos2θ=m2
We know that sin2θ+cos2θ=1
Using the above identity, we get
1+2sinθcosθ=m2
Subtracting 1 from both sides, we get
2sinθcosθ=m2−1
Now, we have
sin6θ+cos6θ=(sin2θ)3+(cos2θ)3
We know that a3+b3=(a+b)(a2−ab+b2)
Using the above algebraic identity, we get
sin6θ+cos6θ=(sin2θ+cos2θ)(sin4θ−sin2θcos2θ+cos4θ)
We know that sin2θ+cos2θ=1, we get
sin6θ+cos6θ=sin4θ−sin2θcos2θ+cos4θ
Adding and subtracting 2sin2θcos2θ, we get
sin6θ+cos6θ=sin4θ+2sin2θcos2θ+cos4θ−sin2θcos2θ−2sin2θcos2θ
We know that (a+b)2=a2+2ab+b2, we get
sin6θ+cos6θ=(sin2θ+cos2θ)2−3sin2θcos2θ
Using sin2θ+cos2θ=1, we get
sin6θ+cos6θ=1−3(sinθcosθ)2
Substituting the value of sinθcosθ, we get
sin6θ+cos6θ=1−3(2m2−1)2
Hence, we have
sin6θ+cos6θ=1−34(m2−1)2=44−3(m2−1)2
Hence proved.
Note: Alternative solution 1:
We know from the binomial theorem that sin6x=(2ieix−e−ix)6=26−1(ei6x−6ei4x+15ei2x−20+15e−i2x−6e−i4x+e−i6x)
Similarly cos6x=261(ei6x+6ei4x+15ei2x+20+15e−i2x+6e−i4x+e−i6x)
Hence, we have
cos6x+sin6x=261(12ei4x+40+12e−i4x)=161(3(2cos4x)+10)=81(3cos4x+5)
Now, we have cos4x=1−2sin22x=1−2(m2−1)2
Hence, we have cos6x+sin6x=81(3(1−2(m2−1)2)+5)=81(8−6(m2−1)2)=41(4−3(m2−1)2)
Alternative solution:
Use the fact that sinθ+cosθ=m,sinθcosθ=2m2−1 to prove that sinθ and cosθ are the roots of the equation x2−mx+2m2−1=0.
Hence use the recurrence relation Pn−mPn−1+2m2−1Pn−2=0, where Pn=sinnθ+cosnθ,n≥3 to prove the above relation.
Start by substituting n = 3 to n = 6 and hence find the value of P6=sin6θ+cos6θ