Solveeit Logo

Question

Question: If \(\sin \theta +\cos \theta =m\), then prove that \({{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfr...

If sinθ+cosθ=m\sin \theta +\cos \theta =m, then prove that sin6θ+cos6θ=14(43(m21)2){{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{1}{4}\left( 4-3{{\left( {{m}^{2}}-1 \right)}^{2}} \right)

Explanation

Solution

Hint: Square both sides of the equation (sinθ+cosθ)=m\left( \sin \theta +\cos \theta \right)=m and expand using the algebraic identity (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}.Use identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. Hence find the value of sinθcosθ\sin \theta \cos \theta .
Factorise sin6θ+cos6θ{{\sin }^{6}}\theta +{{\cos }^{6}}\theta using the identity a3+b3=(a+b)(a2ab+b2){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right). Finally, use a2+b2=(a+b)22ab{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab and hence prove that sin6θ+cos6θ=43(m21)24{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{4-3{{\left( {{m}^{2}}-1 \right)}^{2}}}{4}

Complete step-by-step answer:
We have sinθ+cosθ=m\sin \theta +\cos \theta =m
Squaring both sides of the equation, we get
(sinθ+cosθ)2=m2{{\left( \sin \theta +\cos \theta \right)}^{2}}={{m}^{2}}
We know that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
Using the above algebraic identity, we get
sin2θ+2sinθcosθ+cos2θ=m2{{\sin }^{2}}\theta +2\sin \theta \cos \theta +{{\cos }^{2}}\theta ={{m}^{2}}
We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
Using the above identity, we get
1+2sinθcosθ=m21+2\sin \theta \cos \theta ={{m}^{2}}
Subtracting 1 from both sides, we get
2sinθcosθ=m212\sin \theta \cos \theta ={{m}^{2}}-1
Now, we have
sin6θ+cos6θ=(sin2θ)3+(cos2θ)3{{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta \right)}^{3}}+{{\left( {{\cos }^{2}}\theta \right)}^{3}}
We know that a3+b3=(a+b)(a2ab+b2){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)
Using the above algebraic identity, we get
sin6θ+cos6θ=(sin2θ+cos2θ)(sin4θsin2θcos2θ+cos4θ){{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)\left( {{\sin }^{4}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta +{{\cos }^{4}}\theta \right)
We know that sin2θ+cos2θ=1,{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, we get
sin6θ+cos6θ=sin4θsin2θcos2θ+cos4θ{{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\sin }^{4}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta +{{\cos }^{4}}\theta
Adding and subtracting 2sin2θcos2θ,2{{\sin }^{2}}\theta {{\cos }^{2}}\theta , we get
sin6θ+cos6θ=sin4θ+2sin2θcos2θ+cos4θsin2θcos2θ2sin2θcos2θ{{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\sin }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta +{{\cos }^{4}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta
We know that (a+b)2=a2+2ab+b2,{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}, we get
sin6θ+cos6θ=(sin2θ+cos2θ)23sin2θcos2θ{{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta
Using sin2θ+cos2θ=1,{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, we get
sin6θ+cos6θ=13(sinθcosθ)2{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3{{\left( \sin \theta \cos \theta \right)}^{2}}
Substituting the value of sinθcosθ,\sin \theta \cos \theta , we get
sin6θ+cos6θ=13(m212)2{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3{{\left( \dfrac{{{m}^{2}}-1}{2} \right)}^{2}}
Hence, we have
sin6θ+cos6θ=13(m21)24=43(m21)24{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3\dfrac{{{\left( {{m}^{2}}-1 \right)}^{2}}}{4}=\dfrac{4-3{{\left( {{m}^{2}}-1 \right)}^{2}}}{4}
Hence proved.

Note: Alternative solution 1:
We know from the binomial theorem that sin6x=(eixeix2i)6=126(ei6x6ei4x+15ei2x20+15ei2x6ei4x+ei6x){{\sin }^{6}}x={{\left( \dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i} \right)}^{6}}=\dfrac{-1}{{{2}^{6}}}\left( {{e}^{i6x}}-6{{e}^{i4x}}+15{{e}^{i2x}}-20+15{{e}^{-i2x}}-6{{e}^{-i4x}}+{{e}^{-i6x}} \right)
Similarly cos6x=126(ei6x+6ei4x+15ei2x+20+15ei2x+6ei4x+ei6x){{\cos }^{6}}x=\dfrac{1}{{{2}^{6}}}\left( {{e}^{i6x}}+6{{e}^{i4x}}+15{{e}^{i2x}}+20+15{{e}^{-i2x}}+6{{e}^{-i4x}}+{{e}^{-i6x}} \right)
Hence, we have
cos6x+sin6x=126(12ei4x+40+12ei4x)=116(3(2cos4x)+10)=18(3cos4x+5){{\cos }^{6}}x+{{\sin }^{6}}x=\dfrac{1}{{{2}^{6}}}\left( 12{{e}^{i4x}}+40+12{{e}^{-i4x}} \right)=\dfrac{1}{16}\left( 3\left( 2\cos 4x \right)+10 \right)=\dfrac{1}{8}\left( 3\cos 4x+5 \right)
Now, we have cos4x=12sin22x=12(m21)2\cos 4x=1-2{{\sin }^{2}}2x=1-2{{\left( {{m}^{2}}-1 \right)}^{2}}
Hence, we have cos6x+sin6x=18(3(12(m21)2)+5)=18(86(m21)2)=14(43(m21)2){{\cos }^{6}}x+{{\sin }^{6}}x=\dfrac{1}{8}\left( 3\left( 1-2{{\left( {{m}^{2}}-1 \right)}^{2}} \right)+5 \right)=\dfrac{1}{8}\left( 8-6{{\left( {{m}^{2}}-1 \right)}^{2}} \right)=\dfrac{1}{4}\left( 4-3{{\left( {{m}^{2}}-1 \right)}^{2}} \right)
Alternative solution:
Use the fact that sinθ+cosθ=m,sinθcosθ=m212\sin \theta +\cos \theta =m,\sin \theta \cos \theta =\dfrac{{{m}^{2}}-1}{2} to prove that sinθ\sin \theta and cosθ\cos \theta are the roots of the equation x2mx+m212=0{{x}^{2}}-mx+\dfrac{{{m}^{2}}-1}{2}=0.
Hence use the recurrence relation PnmPn1+m212Pn2=0{{P}_{n}}-m{{P}_{n-1}}+\dfrac{{{m}^{2}}-1}{2}{{P}_{n-2}}=0, where Pn=sinnθ+cosnθ,n3{{P}_{n}}={{\sin }^{n}}\theta +{{\cos }^{n}}\theta ,n\ge 3 to prove the above relation.
Start by substituting n = 3 to n = 6 and hence find the value of P6=sin6θ+cos6θ{{P}_{6}}={{\sin }^{6}}\theta +{{\cos }^{6}}\theta