Solveeit Logo

Question

Question: If \(\sin \theta\), \(\cos \theta\) and \(\tan \theta\) are in G.P. then find the value of \(\cot^{6...

If sinθ\sin \theta, cosθ\cos \theta and tanθ\tan \theta are in G.P. then find the value of cot6θcot2θ\cot^{6} \theta − \cot^{2} \theta.

A. 1

B. 12

C. 2

D. 3

Explanation

Solution

Hint: Use the basic definition of GP and the necessary trigonometric identities to arrive at the answer.

Complete step-by-step answer:

Now, we know that if 3 terms a, b, c are in GP then we can write,

ba=cb=r\dfrac{b}{a} = \dfrac{c}{b} = r, where r is the common ratio.

The above can also be written as

b2=ac(1)\Rightarrow b^2 = ac \to (1)

It is given that sinθ\sin \theta, cosθ\cos \theta, tanθ\tan \theta are in GP, so from eqn (1), we can write,

cos2θ=sinθ×tanθ(2)\cos^{2} \theta = \sin \theta \times \tan \theta \to (2)

Now tanθ=sinθcosθ\tan \theta = \dfrac{\sin \theta}{\cos \theta}, substituting in equation (2), we get,

cos2θ=sinθ×sinθcosθ\Rightarrow \cos^{2} \theta = \sin \theta \times {\dfrac{\sin \theta}{\cos \theta}}

cos2θ=sin2θcosθ\Rightarrow \cos^{2} \theta = \dfrac{\sin^{2} \theta}{\cos \theta}

sin2θcos3θ=1(3)\Rightarrow \dfrac{\sin^{2} \theta}{\cos^{3} \theta} =1 \to (3)

It can be also rearranged as,

cos2θsin2θ=1cosθ=secθ\Rightarrow \dfrac{\cos^{2} \theta}{\sin^{2} \theta} = \dfrac{1}{\cos \theta} = \sec \theta

cot2θ=secθ(4)(cosθsinθ=cotθ)\Rightarrow \cot^{2} \theta = \sec \theta \to (4) (\because \dfrac{\cos \theta}{\sin \theta} = \cot \theta)

Now, we have to find the value of cot6θcot2θ\cot^{6} \theta - \cot^{2} \theta

It can be written as, (cot2θ)3cot2θ(\cot^{2} \theta)^3 - \cot^{2} \theta

Substituting from eqn (4), we get,

sec3θsecθ\Rightarrow \sec^{3} \theta - \sec \theta

Taking secθ\sec \theta common

secθ(sec2θ1)\Rightarrow \sec \theta (\sec^{2} \theta - 1)

We know (from trigonometric identities) that sec2θ1=tan2θ\sec^{2} \theta - 1 = \tan^{2} \theta, we get

secθ×tan2θ\Rightarrow \sec \theta \times \tan^{2} \theta

1cosθ×sin2θcos2θ\Rightarrow \dfrac{1}{\cos \theta} \times \dfrac{\sin^{2} \theta}{\cos^{2} \theta}

sin2θcos3θ\Rightarrow \dfrac{\sin^{2} \theta}{\cos^{3} \theta}

=1= 1 (from eqn. (3))

Hence the value of cot6θcot2θ\cot^{6} \theta - \cot^{2} \theta is 1.

\therefore Option A. is correct.

Note: Such problems, where more than one concept is involved can be solved easily by knowing the basics of those concepts. Using the necessary properties will solve these problems. Mistakes can be avoided while rearranging and substituting.