Solveeit Logo

Question

Question: If \[(\sin \theta + \cos \theta )\]and \((3,2)\)lie on the line \(x + y = 1\)then find the value of\...

If (sinθ+cosθ)(\sin \theta + \cos \theta )and (3,2)(3,2)lie on the line x+y=1x + y = 1then find the value ofθ\theta .
(a) (0,0)\left( {0,0} \right)
(b) (0,π4)\left( {0,\dfrac{\pi }{4}} \right)
(c) (π4,0)\left( {\dfrac{\pi }{4},0} \right)
(d) None of the above

Explanation

Solution

The given problem revolves around the concepts of trigonometric equations. Since, we are assuming some variables for the given line (with given certain points). After certain mathematical calculations i.e. substituting the values in the given line equation then putting the values of sine and cosine terms using the factorization formula of trigonometric ratios, the desired solution can be obtained.

Complete step by step answer:
Since, the given equation,
x+y=1 x+y1=0  x + y = 1 \\\ \Rightarrow x + y - 1 = 0 \\\
Satisfies the given points (sinθ,cosθ)(\sin \theta ,\cos \theta )as well as (3,2)(3,2)respectively,
Therefore, assuming this respective equation as line ‘LL’, we get
L=x+y1\Rightarrow L = x + y - 1
Line ‘L1{L_1}’ satisfies the points(3,2)(3,2)on the line ‘LLx+y1=0x + y - 1 = 0,
Hence, substituting the points in the equation, we get

L1=3+21 L1=4  \Rightarrow {L_1} = 3 + 2 - 1 \\\ \Rightarrow {L_1} = 4 \\\

Which, seems the boundary conditions may be greater than or equal toL1{L_1},
L14>0\therefore {L_1} \geqslant 4 > 0
Similarly,
Line ‘L2{L_2}’ satisfies the points(sinθ,cosθ)(\sin \theta ,\cos \theta )on the line ‘LLx+y1=0x + y - 1 = 0,
Hence, substituting the points in the equation, we get
L2=sinθ+cosθ1\Rightarrow {L_2} = \sin \theta + \cos \theta - 1
Which, seems the boundary conditions may be greater than or equal toL2{L_2},
L2sinθ+cosθ1>0\therefore {L_2} \geqslant \sin \theta + \cos \theta - 1 > 0
Since, the given both the points satisfies on same line, we get
L1L2>0\therefore {L_1}{L_2} > 0
Substituting the values L1{L_1}and L2{L_2} in above equation, we get

4(sinθ+cosθ1)>0 sinθ+cosθ1>0  \Rightarrow 4(\sin \theta + \cos \theta - 1) > 0 \\\ \Rightarrow \sin \theta + \cos \theta - 1 > 0 \\\

Solving the equation mathematically, we get
sinθ+cosθ>1\Rightarrow \sin \theta + \cos \theta > 1
Now, since we can predict that to get the value of L.H.S. as greater than>1 > 1, the value should be greater than one,
Hence, multiplying and dividing the above equation by2\sqrt 2 , we get

2(12sinθ+12cosθ)>1 12sinθ+12cosθ>12  \Rightarrow \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin \theta + \dfrac{1}{{\sqrt 2 }}\cos \theta } \right) > 1 \\\ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin \theta + \dfrac{1}{{\sqrt 2 }}\cos \theta > \dfrac{1}{{\sqrt 2 }} \\\

But, we know thatsin45=sinπ4=12\sin {45^ \circ } = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}andcos45=cosπ4=12\cos {45^ \circ } = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},
\therefore The equation can also written as,
sinπ4sinθ+cosπ4cosθ>12\Rightarrow \sin \dfrac{\pi }{4}\sin \theta + \cos \dfrac{\pi }{4}\cos \theta > \dfrac{1}{{\sqrt 2 }}
By using factorisation formula for trigonometric ratios i.e. sin(A+B)=sinAsinB+cosAcosB\sin (A + B) = \sin A\sin B + \cos A\cos B, we get,

sin(π4+θ)>sinπ4 π4+θ>π4  \Rightarrow \sin \left( {\dfrac{\pi }{4} + \theta } \right) > \sin \dfrac{\pi }{4} \\\ \Rightarrow \dfrac{\pi }{4} + \theta > \dfrac{\pi }{4} \\\

By solving the equation mathematically, we get
θ>0\Rightarrow \theta > 0… (i)
That is,
=sinθ=sin0=0 also, =cosθ=cos0=90=π2rad  = \sin \theta = \sin 0 = 0{\text{ also,}} \\\ = \cos \theta = \cos 0 = {90^ \circ } = {\dfrac{\pi }{2}{rad}} \\\
As a result, equations (i) revolves within these values, we get

π2>(π4+θ)>0  = 0<(π4+θ)<π2  \Rightarrow \dfrac{\pi }{2} > \left( {\dfrac{\pi }{4} + \theta } \right) > 0 \\\ {\text{ = }}0 < \left( {\dfrac{\pi }{4} + \theta } \right) < \dfrac{\pi }{2} \\\

Hence, taking the term (π4)\left( {\dfrac{\pi }{4}} \right)to R.H.S. i.e. subtracting π4\dfrac{\pi }{4}fromπ2\dfrac{\pi }{2}, the equation becomes

0<θ<(π2π4) =0<θ<π4  \Rightarrow 0 < \theta < \left( {\dfrac{\pi }{2} - \dfrac{\pi }{4}} \right) \\\ = 0 < \theta < \dfrac{\pi }{4} \\\

Hence, θ\theta lies between 0 and π40{\text{ and }}\dfrac{\pi }{4}respectively.

So, the correct answer is “Option b”.

Note:
One must know the trigonometric values for ‘sine’ and ‘cosine’ terms respectively. Then, considering their trigonometric ratios (formulae) like, sin(A+B)=sinAsinB+cosAcosB\sin (A + B) = \sin A\sin B + \cos A\cos B so as to distinguish the solution accurately. Also, we should know all the required values of standard angles say, 0o,30o,45o,60o,90o,180o,270o,360o{0^o},{30^o},{45^o},{60^o},{90^o},{180^o},{270^o},{360^o}respectively for each trigonometric term such assin,cos,tan,cot,sec,cosec\sin ,\cos ,\tan ,\cot ,\sec ,\cos ec, etc. We should take care of the calculations to convert the angles from ‘degrees’ to ‘radian’ form say, 30=30×π180=π6radian{30^ \circ } = {30^ \circ } \times \dfrac{\pi }{{180}} = {\dfrac{\pi }{6}{radian}} so as to be sure of our final answer.