Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If sinθ\sin\,\theta and cosθ\cos \theta are the roots of the equation ax2bx+c=0ax^2 - bx + c = 0, then a,ba, b and cc satisfy the relation

A

a2+b2+2ac=0a^2 + b^2 + 2ac = 0

B

a2b2+2ac=0a^2 - b^2 + 2ac = 0

C

a2+c2+2ab=0a^2 + c^2 + 2ab = 0

D

a2b22ac=0a^2 - b^2 - 2ac = 0

Answer

a2b2+2ac=0a^2 - b^2 + 2ac = 0

Explanation

Solution

Since, sinθ\sin \theta and cosθ\cos \theta are the roots of the equation ax2bx+c=0a x^{2}-b x+c=0
sinθ+cosθ=ba\therefore \sin \theta+\cos \theta=\frac{b}{a} and sinθcosθ=ca\sin \theta \cos \theta=\frac{c}{a}
(sin2θ+cos2θ+2sinθcosθ)=b2a2\Rightarrow \left(\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta\right)=\frac{b^{2}}{a^{2}}
1+2sinθcosθ=b2a2\Rightarrow 1+2 \sin \theta \cos \theta=\frac{b^{2}}{a^{2}}
1+2×ca=b2a2\Rightarrow 1+2 \times \frac{c}{a}=\frac{b^{2}}{a^{2}}
a2b2+2ac=0\Rightarrow a^{2}-b^{2}+2 a c=0