Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sin(θ+α)=cos(θ+α),\sin(\theta + \alpha) = \cos(\theta + \alpha), then the value of 1tanα1+tanα\frac{1 - \tan \alpha}{1+ \tan \alpha} is

A

tanθ- \tan \theta

B

cosθ- \cos \theta

C

00

D

tanθ\tan \theta

Answer

tanθ\tan \theta

Explanation

Solution

sin(θ+α)=cos(θ+α),\sin(\theta + \alpha) = \cos(\theta + \alpha),
sinθcosα+cosθsinα=cosθcosαsinθsinα\sin\theta \cos\alpha + \cos\theta \sin\alpha =\cos\theta \cos \alpha - \sin \theta \sin\alpha
sinθ(cosα+sinα)=cosθ(cosαsinα)\sin \theta\left(\cos\alpha + \sin \alpha \right)= \cos \theta \left( \cos \alpha - \sin\alpha\right)
=tanθ=cosαsinαcosα+sinα=1tanα1+tanα=\tan \theta= \frac{\cos\alpha- \sin \alpha }{\cos \alpha + \sin \alpha } = \frac{1 - \tan \alpha}{1+ \tan \alpha}