Solveeit Logo

Question

Question: If \[sin{\text{ }}\theta {\text{ }} = {\text{ }}\dfrac{{12}}{{13}}{\text{ }},{\text{ }}\left( {{\tex...

If sin θ = 1213 , ( 0 < θ < π2)sin{\text{ }}\theta {\text{ }} = {\text{ }}\dfrac{{12}}{{13}}{\text{ }},{\text{ }}\left( {{\text{ }}0{\text{ }} < {\text{ }}\theta {\text{ }} < {\text{ }}\dfrac{\pi }{2}} \right) and cos ϕ = 35 , ( π < ϕ < 3π2 )cos{\text{ }}\phi {\text{ }} = {\text{ }}\dfrac{{ - 3}}{5}{\text{ }},{\text{ }}\left( {{\text{ }}\pi {\text{ }} < {\text{ }}\phi {\text{ }} < {\text{ }}\dfrac{{3\pi }}{2}{\text{ }}} \right) , then sin ( ϕ+ θ )sin{\text{ }}\left( {{\text{ }}\phi + {\text{ }}\theta {\text{ }}} \right) will be
(1)\left( 1 \right) 5661\dfrac{{ - 56}}{{61}}
  (2)\;\left( 2 \right) 5665\dfrac{{ - 56}}{{65}}
  (3)\;\left( 3 \right) 165\dfrac{1}{{65}}
(4)\left( 4 \right) 56 - 56

Explanation

Solution

Hint : We have to find the value of sin ( ϕ + θ )sin{\text{ }}\left( {{\text{ }}\phi {\text{ }} + {\text{ }}\theta {\text{ }}} \right) . We solve this using the concept of the quadrant system . We should know the concept of sign and value of the trigonometric functions in four quadrants . The values of the trigonometric function have different values for different trigonometric functions with different signs .
We also apply the formula of sin ( a + b )sin{\text{ }}\left( {{\text{ }}a{\text{ }} + {\text{ }}b{\text{ }}} \right) and putting the values in the required formula we get the value .

Complete step-by-step answer :
sin θ =1213 , ( 0 < θ < π2 )sin{\text{ }}\theta {\text{ }} = \dfrac{{12}}{{13}}{\text{ }},{\text{ }}\left( {{\text{ }}0{\text{ }} < {\text{ }}\theta {\text{ }} < {\text{ }}\dfrac{\pi }{2}{\text{ }}} \right)
cos ϕ = 35, ( π < ϕ< 3π2)cos{\text{ }}\phi {\text{ }} = {\text{ }}\dfrac{{ - 3}}{5},{\text{ }}\left( {{\text{ }}\pi {\text{ }} < {\text{ }}\phi < {\text{ }}\dfrac{{3\pi }}{2}} \right)
The value of θ\theta lies in the first quadrant
We also know that ,
sin θ =    perpendicularhypotenuse  sin{\text{ }}\theta {\text{ }} = {\text{ }}\;\dfrac{{{\text{ }}perpendicular}}{{hypotenuse\;}}
Comparing the two
Perpendicular ( P ) = 12\left( {{\text{ }}P{\text{ }}} \right){\text{ }} = {\text{ }}12 and hypotenuse ( H ) = 13\left( {{\text{ }}H{\text{ }}} \right){\text{ }} = {\text{ }}13


Using the formula ,
(base)2+(P)2=(H)2{(base)^2} + {(P)^2} = {(H)^2}
So ,
Value of base ( B )\left( {{\text{ }}B{\text{ }}} \right) =[H2P2]= \sqrt {[{H^2} - {P^2}] }
B=[132122]B = \sqrt {[{{13}^2} - {{12}^2}] }
B=[169144]B = \sqrt {[169 - 144] }
B=[25]B = \sqrt {[25] }
B = 5B{\text{ }} = {\text{ }}5
As the value of cos is positive in first quadrant , then
cos θ = BHcos{\text{ }}\theta {\text{ }} = {\text{ }}\dfrac{B}{H}
cos θ = 513cos{\text{ }}\theta {\text{ }} = {\text{ }}\dfrac{5}{{13}}
Similarly , calculating the value of sin ϕsin{\text{ }}\phi

As ,
cos ϕ= 35cos{\text{ }}\phi = {\text{ }}\dfrac{{ - 3}}{5}
As ϕ\phi lies in third quadrant
We also know that ,
cos ϕ =BHcos{\text{ }}\phi {\text{ }} = \dfrac{B}{H}
Comparing the two
Base = 3 = {\text{ }}3 and hypotenuse = 5 = {\text{ }}5

Using the formula of hypotenuse
B2+P2=H2{B^2} + {P^2} = {H^2}
So ,
Value of P=[5232]P = \sqrt {[{5^2} - {3^2}] }
P=[259]P = \sqrt {[25 - 9] }
P=[16]P = \sqrt {[16] }
P = 4P{\text{ }} = {\text{ }}4
As the value of sin is negative in third quadrant , then
sin ϕ = PHsin{\text{ }}\phi {\text{ }} = {\text{ }}\dfrac{P}{H}
sin ϕ = 45sin{\text{ }}\phi {\text{ }} = {\text{ }}\dfrac{{ - 4}}{5}
Using the formula
sin ( a + b ) = sin a × cos b + sin b × cos asin{\text{ }}\left( {{\text{ }}a{\text{ }} + {\text{ }}b{\text{ }}} \right){\text{ }} = {\text{ }}sin{\text{ }}a{\text{ }} \times {\text{ }}cos{\text{ }}b{\text{ }} + {\text{ }}sin{\text{ }}b{\text{ }} \times {\text{ }}cos{\text{ }}a

Now putting the values in the formula , we get
sin ( θ + ϕ) = sin θ ×cos ϕ + sin ϕ ×cos θsin{\text{ }}\left( {{\text{ }}\theta {\text{ }} + {\text{ }}\phi } \right){\text{ }} = {\text{ }}sin{\text{ }}\theta {\text{ }} \times cos{\text{ }}\phi {\text{ }} + {\text{ }}sin{\text{ }}\phi {\text{ }} \times cos{\text{ }}\theta
Substituting the values in the formula , we get
sin ( θ + ϕ ) = 1213 × ( 35) + ( 45 ) × 513sin{\text{ }}\left( {{\text{ }}\theta {\text{ }} + {\text{ }}\phi {\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{{12}}{{13}}{\text{ }} \times {\text{ }}\left( {{\text{ }}\dfrac{{ - 3}}{5}} \right){\text{ }} + {\text{ }}\left( {{\text{ }}\dfrac{{ - 4}}{5}{\text{ }}} \right){\text{ }} \times {\text{ }}\dfrac{5}{{13}}
sin ( θ + ϕ ) = 3665 2065sin{\text{ }}\left( {{\text{ }}\theta {\text{ }} + {\text{ }}\phi {\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{{ - 36}}{{65}}{\text{ }} - \dfrac{{20}}{{65}}
sin ( θ + ϕ ) = 5665sin{\text{ }}\left( {{\text{ }}\theta {\text{ }} + {\text{ }}\phi {\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{{ - 56}}{{65}}
Hence , the value of sin ( θ + ϕ ) = 5665sin{\text{ }}\left( {{\text{ }}\theta {\text{ }} + {\text{ }}\phi {\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{{ - 56}}{{65}}
Thus , the correct option is (2)\left( 2 \right)
So, the correct answer is “Option 2”.

Note : We have various trigonometric formulas used to solve the problem
The various trigonometric formulas used :
sin ( a + b ) = sin a × cos b + sin b × cos asin{\text{ }}\left( {{\text{ }}a{\text{ }} + {\text{ }}b{\text{ }}} \right){\text{ }} = {\text{ }}sin{\text{ }}a{\text{ }} \times {\text{ }}cos{\text{ }}b{\text{ }} + {\text{ }}sin{\text{ }}b{\text{ }} \times {\text{ }}cos{\text{ }}a
sin ( a  b ) = sin a × cos b  sin b × cos asin{\text{ }}\left( {{\text{ }}a{\text{ }} - {\text{ }}b{\text{ }}} \right){\text{ }} = {\text{ }}sin{\text{ }}a{\text{ }} \times {\text{ }}cos{\text{ }}b{\text{ }} - {\text{ }}sin{\text{ }}b{\text{ }} \times {\text{ }}cos{\text{ }}a
cos ( a + b ) = cos a × cos b  sin b × sin acos{\text{ }}\left( {{\text{ }}a{\text{ }} + {\text{ }}b{\text{ }}} \right){\text{ }} = {\text{ }}cos{\text{ }}a{\text{ }} \times {\text{ }}cos{\text{ }}b{\text{ }} - {\text{ }}sin{\text{ }}b{\text{ }} \times {\text{ }}sin{\text{ }}a
cos ( a  b ) = cos a × cos b + sin b × sin acos{\text{ }}\left( {{\text{ }}a{\text{ }} - {\text{ }}b{\text{ }}} \right){\text{ }} = {\text{ }}cos{\text{ }}a{\text{ }} \times {\text{ }}cos{\text{ }}b{\text{ }} + {\text{ }}sin{\text{ }}b{\text{ }} \times {\text{ }}sin{\text{ }}a
All the trigonometric functions are positive in first quadrant , the sin function are positive in second quadrant and rest are negative , the tan function are positive in third quadrant and rest are negative , the cos function are positive in fourth quadrant and rest are negative .