Question
Question: If sin α + sin β = 1/3 and cos α + cos β = 1/4. Then the value of sin(α + β) is...
If sin α + sin β = 1/3 and cos α + cos β = 1/4. Then the value of sin(α + β) is
Answer
24/25
Explanation
Solution
Solution:
Given
sinα+sinβ=31andcosα+cosβ=41.-
Express the sums using sum-to-product formulas:
sinα+sinβ=2sin2α+βcos2α−β cosα+cosβ=2cos2α+βcos2α−β -
Divide the two equations:
cosα+cosβsinα+sinβ=2cos2α+βcos2α−β2sin2α+βcos2α−β=tan2α+βSo,
tan2α+β=4131=34 -
For tanθ=34, consider a right triangle with opposite side 4, adjacent side 3. Then,
sin2α+β=54,cos2α+β=53. -
Use the double angle formula:
sin(α+β)=2sin2α+βcos2α+β=2(54)(53)=2524.