Solveeit Logo

Question

Question: If sin α + sin β = 1/3 and cos α + cos β = 1/4. Then the value of sin(α + β) is...

If sin α + sin β = 1/3 and cos α + cos β = 1/4. Then the value of sin(α + β) is

Answer

24/25

Explanation

Solution

Solution:

Given

sinα+sinβ=13andcosα+cosβ=14.\sin \alpha+\sin \beta=\frac{1}{3} \quad \text{and} \quad \cos \alpha+\cos \beta=\frac{1}{4}.
  1. Express the sums using sum-to-product formulas:

    sinα+sinβ=2sinα+β2cosαβ2\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} cosα+cosβ=2cosα+β2cosαβ2\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}
  2. Divide the two equations:

    sinα+sinβcosα+cosβ=2sinα+β2cosαβ22cosα+β2cosαβ2=tanα+β2\frac{\sin \alpha+\sin \beta}{\cos \alpha+\cos \beta}=\frac{2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}}{2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}}=\tan\frac{\alpha+\beta}{2}

    So,

    tanα+β2=1314=43\tan\frac{\alpha+\beta}{2}=\frac{\frac{1}{3}}{\frac{1}{4}}=\frac{4}{3}
  3. For tanθ=43\tan\theta=\frac{4}{3}, consider a right triangle with opposite side 4, adjacent side 3. Then,

    sinα+β2=45,cosα+β2=35.\sin\frac{\alpha+\beta}{2}=\frac{4}{5},\quad \cos\frac{\alpha+\beta}{2}=\frac{3}{5}.
  4. Use the double angle formula:

    sin(α+β)=2sinα+β2cosα+β2=2(45)(35)=2425.\sin(\alpha+\beta)=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha+\beta}{2}=2\left(\frac{4}{5}\right)\left(\frac{3}{5}\right)=\frac{24}{25}.