Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If sin(sin115+cos1x)=1\sin(sin^{-1}\frac{1}{5}+\cos^{-1}x)=1 , then find the value of x.

Answer

sin(sin115+cos1x)=1\sin(sin^{-1}\frac{1}{5}+\cos^{-1}x)=1
sin(sin115)cos(cos1)+cos(sin115)sin(cos1x)=1\Rightarrow\sin(\sin^{-1}\frac{1}{5})\cos(\cos^{-1})+\cos(\sin^{-1}\frac{1}{5})\sin(\cos^{-1}x)=1
[sin(A+B)=sinAcosB+cosAsinB]
15x+cos(sin115)sin(cos1x)=1\Rightarrow\frac{1}{5}*x+\cos(\sin^{-1}\frac{1}{5})\sin(\cos^{-1}x)=1
15+cos(sin115)sin(cos1x)=1\Rightarrow\frac{1}{5}+\cos(\sin^{-1}\frac{1}{5})\sin(\cos^{-1}x)=1 .......(1)
Now, let sin-1(15)(\frac{1}{5})=y.
Then ,sin y=15\frac{1}{5} \Rightarrow cos y= 1(152)=265\sqrt{1-(\frac{1}{5}^2})=2\sqrt{\frac{6}{5}}
\Rightarrow cos1(265)\cos^{-1}(2\frac{\sqrt6}{5}).
therefore sin-11/5=cos-1(2√6/5) .......(2)
let cos-1 x=z
Then cosz=x =>sinz=√1-x2
=>z=sin-1(√1-x2)
therefore cos-1x=sin-1(√1-x2) ....(3)
from (1),(2) and (3)
x/5+cos(cos-1(2√6/5)).sin(sin-1(√1-x2))=1
x/5+2√6/5.√1-x2=1
\Rightarrow x+2√6 1x2\sqrt{1-x^2} =5
\Rightarrow 2√6 1x2\sqrt{1-x^2} =5-x
On squaring both sides, we get:(4)(6)(1-x2)=25+x2-10x
\Rightarrow 24-24x2=25+x2-10x
\Rightarrow 25x2-10x+1=0
\Rightarrow (5x-1)2=0
\Rightarrow x=15\frac{1}{5}.

Hence, the value of x is 15\frac{1}{5}