Question
Mathematics Question on Inverse Trigonometric Functions
If sin(sin−151+cos−1x)=1 , then find the value of x.
Answer
sin(sin−151+cos−1x)=1
⇒sin(sin−151)cos(cos−1)+cos(sin−151)sin(cos−1x)=1
[sin(A+B)=sinAcosB+cosAsinB]
⇒51∗x+cos(sin−151)sin(cos−1x)=1
⇒51+cos(sin−151)sin(cos−1x)=1 .......(1)
Now, let sin-1(51)=y.
Then ,sin y=51 ⇒ cos y= 1−(512)=256
⇒ cos−1(256).
therefore sin-11/5=cos-1(2√6/5) .......(2)
let cos-1 x=z
Then cosz=x =>sinz=√1-x2
=>z=sin-1(√1-x2)
therefore cos-1x=sin-1(√1-x2) ....(3)
from (1),(2) and (3)
x/5+cos(cos-1(2√6/5)).sin(sin-1(√1-x2))=1
x/5+2√6/5.√1-x2=1
⇒ x+2√6 1−x2 =5
⇒ 2√6 1−x2 =5-x
On squaring both sides, we get:(4)(6)(1-x2)=25+x2-10x
⇒ 24-24x2=25+x2-10x
⇒ 25x2-10x+1=0
⇒ (5x-1)2=0
⇒ x=51.
Hence, the value of x is 51